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Doctor Éric BONNEAU Inspector
Doctor Richard DUCLOUX Inspector
Professor Thierry COUPEZ Thesis advisor
Professor Jean-François AGASSANT Thesis advisor





with the memory of my grandfather





Contents

Main introduction 3
Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Rem3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Initial context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

I 3D unstructured and anisotropic mesh generation 7
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1 Meshes and metrics 11
1.1 Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.1.2 Diagonalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 Simplex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.2 Simplex measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.3 Metric associated with a simplex . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2.4 Simplex quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.2 Mesh volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3.3 Mesh conformity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Meshing a domain from a mesh of its boundary 19
2.1 State of the art: three classical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 Meshing by tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.2 Advancing front . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.3 Delaunay method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.3.1 Delaunay triangulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.1.3.2 Delaunay mesh generation . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Topological optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.1 Mathematical background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.1.1 Mesh topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.1.2 Minimal volume theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.1.3 Shape criterion and order relationship . . . . . . . . . . . . . . . . . . . . 29

2.2.2 Mesh generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.2.1 Local topology optimization . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.2.2 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.2.3 Boundary treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

v



vi CONTENTS

3 Mesh adaption driven by a metric field 35
3.1 State of the art: an hybrid Delaunay / advancing front method . . . . . . . . . . . . . . . 36

3.1.1 Constrained advancing front . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.1.2 Algorithm modifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Topological optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.1 Anisotropic optimization strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.1.1 Anisotropic shape criterion and size criterion . . . . . . . . . . . . . . . . 39
3.2.1.2 Order relationship between local topologies . . . . . . . . . . . . . . . . . 40
3.2.1.3 Algorithm modifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.1.4 Metric update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.2 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.2.1 Anisotropic case in 2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2.2.2 Isotropic case in 2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2.2.3 Anisotropic case in 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

II Natural metric 51
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Natural metric generated a priori 55
4.1 Local anisotropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.1.2 Neighborhood growing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Discrete elliptic interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2.1 Semi-definite programming problem . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2.2 Tensor decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2.3 Elementary metric combination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2.4 Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Appropriate order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3.1 Interpolation error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3.2 Final algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4 Several element layers through the thickness . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.4.1 Selective division . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.4.2 Iteration process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.4.3 Multiple thickness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5 Numerical applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.5.1 Natural mesh of cavities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.5.2 Limitations and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 Natural metric corrected a posteriori 83
5.1 Scalar field heterogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.1.1 Typical simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.1.1.1 Simulation conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.1.1.2 Potentially interesting fields . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.1.2 Natural metric correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.1.2.1 Additional term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.1.2.2 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2 Error indicator on anisotropic meshes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.2.1 Metric corrected by an indicator uniformity . . . . . . . . . . . . . . . . . . . . . . 91

5.2.1.1 Computation of the local correction factor . . . . . . . . . . . . . . . . . 91
5.2.1.2 A possible strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2.2 Error estimation with the mesh anisotropy taken into account . . . . . . . . . . . . 93



CONTENTS vii

III Multidomain metric 95
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6 Multidomain metric generated a priori 99
6.1 Natural sub-mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.1.1 Exact interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.1.2 Fuzzy interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.2 Discontinuity surface capturing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.2.1 Interface tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.2.2 Discontinuous P 0 interpolation and voxelization . . . . . . . . . . . . . . . . . . . 105
6.2.3 Discontinuous P 0 gradient and triple point treatment . . . . . . . . . . . . . . . . 106
6.2.4 Capillary number and final algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.2.5 Iteration process and convergence criterion . . . . . . . . . . . . . . . . . . . . . . 110

7 Numerical applications 115
7.1 Polymer forming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.1.1 Validation of the fuzzy multidomain approach . . . . . . . . . . . . . . . . . . . . . 115
7.1.2 Injection molding with a complex geometry and thermal coupling . . . . . . . . . . 119
7.1.3 Over-molding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.2 Computations at microscopic scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.2.1 Rigid inclusion movement in a pure shearing flow . . . . . . . . . . . . . . . . . . . 123
7.2.2 Polycrystalline deformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.3 Boundary layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.3.1 Monodomain mesh improvement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.3.2 Boundary layer with a fixed thickness size . . . . . . . . . . . . . . . . . . . . . . . 127

7.4 Mesh generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Main conclusion 139
Summarize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Industrial applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Mathematical contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Appendices 147

A Complements on meshes and metrics 147
A.1 Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

A.1.1 Conic and parametrization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
A.1.2 Tensorial product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
A.1.3 Operators between metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

A.1.3.1 Several averaged values . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
A.1.3.2 Intersection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

A.1.4 Analytical metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
A.1.4.1 Cartesian metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
A.1.4.2 Cylindrical metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
A.1.4.3 Spherical metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

A.2 Simplex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
A.2.1 Orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
A.2.2 Outgoing normal vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
A.2.3 Equilateral simplex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

A.3 Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160



viii CONTENTS

A.3.1 Reverse topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
A.3.2 Neighborhood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
A.3.3 4D mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

B Complements on natural and multidomain metrics 167
B.1 Local computation of the layer number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

B.1.1 Minimal order evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
B.1.2 Convergence criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

B.2 Subdomain boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
B.2.1 Boundary nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
B.2.2 Boundary faces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

B.3 Voxelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
B.3.1 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
B.3.2 Mesh screening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

C Rem3D simulation example 173
C.1 Pre-treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

C.1.1 Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
C.1.2 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
C.1.3 Initial conditions and boundary conditions . . . . . . . . . . . . . . . . . . . . . . . 175

C.2 Post-treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
C.2.1 Flow during injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
C.2.2 Weld line study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

D Notations 183

List of figures 189

List of tables 191

Bibliography 193

Index 203

Abstract 208



Main introduction

1





MAIN INTRODUCTION 3

Framework

The work presented here has been achieved between October 2001 and September 2004. It takes place
in the Rem3D project, managed by the Rem3D Consortium, involving:

• Atofina (Cerdato)

• Dow Chemicals

• Essilor International

• FCI (Areva)

• Plastic Omnium

• Schneider Electric

• SNECMA Propulsion Solide

• Transvalor

• and the Material Forming Center (CEMEF), research laboratory of l’École des Mines de Paris.

Rem3D

The CIMlib library, from which Rem3D is built, is currently developed at CEMEF, by the High
Performance for Material team. Several projects have contributed to the CIMlib improvements like
[Magnin 1994, Pichelin 1998, Nouatin 2000, Bigot 2001, Fournier 2003]. Here we draw a list of major
functionalities related to the mesh technology dealt with in the present document.

All CIMlib solvers, including:

• a mixed solver P 1 + /P 1 (mini-element velocity, pressure) for Navier-Stokes equations [Saez 2003]
with compressibility and viscoplasticity [Silva 2004]

• a mixed Galerkin solver P 0/P 0+ (discontinuous temperature, discontinuous flux) for heat transfer
equation [Batkam 2002]

• a P 0 discontinuous Galerkin solver for transport equation [Batkam 2002, Bruchon 2004] and ten-
sorial equation of orientation [Silva 2004, Redjeb 2003]

are using:

• 3D tetrahedral, linear and unstructured elements (that is the reason why we focus our attention on
that type of meshes in this document)

• only one mesh for all the parts of a simulation (the multidomain mesh notion is introduces for that
purpose in chapter 6)

• an Eulerian kinematics with a R-adaption of the initial mesh, which remains the same during all
the process (a good initial mesh generation as in part II is required)

• a space-time formulation, for which 4D mesh would be very interesting.

Furthermore, industrial processes addressed by Rem3D are:

• extrusion and injection molding (filling, compacting and cooling [Silva 2004]) for polymers, as in
figure 1
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Figure 1: Comparisons between experimental short shots (in white on black) and Rem3D computation

• all multidomain versions of extrusion and injection molding: co-extrusion, co-injection, gas or
water assisted injection [Daboussy 2000], over-molding [Batkam 2002] and fiber reinforced injection
[Megally et al. 2004]

• other multidomain process, as casting [Saez 2003], polymer foam expansion [Bruchon 2004] and
glass fiber spinning [Rinaldi-Mareel 2004].

All these process simulations have specific needs about the mesh (following section).

Initial context

At the beginning of this work, the picture is as follows:

• industrial parts are geometrically complex (including curvature and sudden change of the thickness
size)

• thin zones are frequent (for cooling time reduction), while thick zones are also present

• the mold around the cavity has to be taken into account because of heterogeneous thermal condi-
tions.

Altogether, there requirements make the meshing process very difficult (when not impossible), even
more difficult than the simulation itself. The need of an automatic tool for meshing all configurations
is obvious. The aim of this work is to address this problem of a priori mesh generation for complex
geometries.



MAIN INTRODUCTION 5

Organization

The three parts of this document (I, II and III) are depicted on the mesh lifecycle (figure 2):

• the first part (page 9) is devoted to the existing results: mesh generation from a mesh of the
boundary and adaption to a metric field

• the second part (page 53) describes a new metric field, designed for building a suitable mesh of the
cavity, may it be improved by a solver and an error estimator

• the third part (page97) extends this metric field to the multidomain framework, that is, when sev-
eral parts have to be meshed simultaneously.

metric
generator

mesh
generator

CAD 
tool

domain 
mesh

suitable
mesh

solver +
estimator

boundary
mesh

I

II

III
II

Figure 2: The overall mesh generation and adaption process

Except the initial boundary meshing, obtained with a CAD tool, which is beyond the scope of this
work, all the steps of figure 2 are concerned with a part of this document, including, some appendices
dedicated to technical information about meshes and metrics (page 147).
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Introduction

This document is not only devoted to new developments about metrics (parts II and III), but also to
the opportunity of capitalizing on the CEMEF meshing tools.

In this part, several mathematical results are proved in a more general framework than before. In
particular, the minimal volume theorem is proved without assumption about orientation. Furthermore,
several minor results are generalized for all dimension (2, 3 or more).

We focus our attention on unstructured mesh composed of simplices, generated by the so-called topo-
logical mesh generator [Coupez 1991]. This topological mesh generator can deal with isotropic adaption,
since [Coupez 1994], whose technique have been further used by [Zavattieri et al. 1996].

Meanwhile, pioneering investigations on anisotropic adaption were performed in 2D, without metric,
by [Peraire et al. 1987, Löhner 1988, Löhner 1989] and with the use of a metric, by [Vallet 1992]. Here,
we emphasize on 3D anisotropic adaption, following the work of [Coupez and Bigot 2000].

The aim of this part is to compare the topological mesh generator with classical methods (octree,
advancing front and Delaunay), in what concerns generation and anisotropic adaption. The major results
are a quantification of the topological mesh generator efficiency and a sensitivity study between several
strategies.

Some preliminaries are given in chapter 1 (page 11), in what concerns meshes and metrics. A compar-
ative study is then depicted between the different mesh generation methods (chapter 2 page 19). Finally,
anisotropic adaption techniques, driven by a metric field, are discussed in chapter 3 (page 35).
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Chapter 1

Meshes and metrics

We intensively use the notion of metric (section 1.1), mesh (section 1.3) and simplex (section 1.2).
Here we propose some definitions and useful properties.

We denote by d ∈ N\{0} the number of coordinates (the spatial dimension, not to be confused
with the topological dimension). We will see that most results do not depend on the dimension d. Actu-
ally, all implementations have been made dimension independent, so as to work in 2D, 3D and even in 4D.

The computational domain is a polytope denoted by Ω ⊂ Rd (in other words, a polygon in 2D and a
polyhedron in 3D) that is bounded, internally not void and with an orientation.

1.1 Metric

To determine the volume of a simplex we need the notion of metric. That is the reason why we begin
with the metric definition.

1.1.1 Definition

Definition 1.1 a metric of Rd is a real matrix with d columns and d rows that is symmetrical and
semi-definite (positive).

A metric can be used to measure the space. Indeed, with a metric M , the bilinear application

〈x, y〉M = y>Mx (1.1)

is a scalar product, whose associated norm is

‖x‖M =
√

x>Mx (1.2)

We will use this norm to measure segment length.

1.1.2 Diagonalization

We can see a metric in different ways. For us, the most useful is the following diagonalized form.

Proposition 1.1 let M be a metric of Rd, then M can be diagonalized by

M = R


1
h2

1

0

. . .

0
1
h2

d

R> (1.3)

11
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where R is a rotation composed by eigenvectors of M and
(

1
h2

i

)
16i6d

are the corresponding eigenvalues.

Thus, we can see a metric M as the given of d principal directions (the columns of R) and one mesh
size hi, in each principal direction.

Proof : M is symmetrical, so, we can diagonalize it in the orthogonal group (at this stage, R is an
orthogonal matrix). Furthermore, M is semi-definite (positive), so, its eigenvalues λi are strictly pos-
itives. Thus, there exists hi 6= 0 such that λi = 1/h2

i . Now, for R we can choose unitary vectors (so
that |det(R)| = 1). If det(R) = −1, then we can choose the opposite of one eigenvector, so as to obtain
det(R) = 1 (finally, R is a rotation matrix). �

Since the metric M is diagonalizable, we can consider it to any power α ∈ R

Mα = R


1

h2α
1

0

. . .

0
1

h2α
d

R> (1.4)

Note that, with this notation M−1 is still the inverse of M . In this document, we will mostly use M ,
M1/2, M−1 and M−1/2.

1.2 Simplex

Meshes of interest are composed of triangles in 2D and tetrahedra in 3D. Here we define the notion
of simplex (valid for all dimension d).

1.2.1 Definition

In fact, we need a definition valid for all dimension and for all number of vertex (for example, a
triangle in 3D has 3 vertices with 3 coordinates).

Definition 1.2 with 0 6 k 6 d

• a k-simplex of Rd is the convex hull of k+1 points of Rd, called vertices

• a k-face of a simplex T is a k-simplex whose k+1 vertices are distinct vertices of T , and, in order
to simplify the following definition 1.4, we adopt this convention: a (-1)-face is the empty set.

Classical denominations are adopted in what concerns a simplex:

• a 2-simplex is a triangle, a 3-simplex is a tetrahedron and a 4-simplex is a pentatope (simplicial 4D
meshes are composed of pentatopes)

• a (k-1)-face of a k simplex is simply a face of that simplex and a 1-face is simply an edge, whose
length is called its size

• a simplex is equilateral if all its sizes are equal and unitary equilateral when this size is 1

• a simplex is said to be not degenerated when the edge vectors from one of its vertices are linearly
independent (in Rd)

• a simplex is a reference simplex when not degenerated and when the coordinates of each vertex are
0 except one, which is 1.



1.2. SIMPLEX 13

1.2.2 Simplex measure

We need to define the measure of a simplex (the volume of a tetrahedron, the area of a triangle, the
length of a segment, etc.).

Proposition 1.2 let T be a k-simplex of Rd whose vertices are S0, . . . , Sk and let A be the rectangular
matrix whose columns are the edge vectors from S0 : A = (S1 − S0, . . . , Sk − S0). The measure of T is

|T | =
√

det (A>A)
k!

(1.5)

Thanks to (1.5), it is possible to compute the measure of a simplex whatever type k and whatever
dimension d.

Proof : let T̂ be the k-reference simplex of Rk, we could recursively (on k) prove that its measure is

|T̂ | = 1
k!

(1.6)

Let us denote by f the affine function from Rk to Rd, whose matrix is A, such that f(T̂ ) = T . From
Riemannian geometry (used in this proof in an Euclidian framework), the induced metric on T , with
map f , by the Euclidian canonical metric (identity matrix) that Rd is equipped with, is M = A>A.
Furthermore, according to [do Carmo 1988, Jost 1998], we have

|T | =
∫

T̂

√
det(M) dx (1.7)

Since M is a constant metric, it comes∫
T̂

√
det(M) dx = |T̂ |

√
det(M) (1.8)

by substituting the value of |T̂ | and the value of M , we obtain (1.5). �

For specific values of k, we have a simplification of (1.5):

when k = d |T | =
|det(A)|

d!

when k = d− 1 |T | =
‖S0S1 ∧ . . . ∧ S0Sd−1‖

(d− 1)!

when k = 1 |T | = ‖S0S1‖

(1.9)

where ∧ . . .∧ is the vectorial product of Rd and ‖ ‖ is the canonical Euclidian norm.

Since the measure is given by (1.5), its value is positive or zero (|T | > 0). The following results says
that the case |T | = 0 corresponds to the degenerated case.

Corollary 1.1 a simplex T is not degenerated if and only if

|T | > 0 (1.10)

This corollary gives a simple criterion to determine whether a simplex is degenerated or not.

Proof : • if T is not degenerated then columns of A are linearly independent, so, the rank of A is
k, the rank of A> and the rank of A>A also, which implies that det

(
A>A

)
> 0

• conversely, if |T | > 0, then there exists a sub-matrix of A with k columns and k rows, whose
determinant is not zero, so, the rank of A is k; it follows that the columns of A are linearly
independent, so, T is not degenerated. �
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1.2.3 Metric associated with a simplex

One of the interpolation techniques used for the natural metric (page 55) needs the computation of the
canonical metric associated with a d-simplex. Here, we indicate two methods to achieve this computation.

Proposition 1.3 let T be a d-simplex of Rd, not degenerated, whose vertices are S0, . . . , Sd

(i) there exists only one metric MT , for which T is unitary equilateral

(ii) let T 0 with vertices O,S0
1 . . . , S0

d be a unitary equilateral d-simplex (in the canonical Euclidian
metric, see appendix A.2.3 page 157 for its construction), then we have

MT = A>
T AT (1.11)

with the matrix AT =
(
S0

1 , ..., S0
d

)(
S1 − S0, ..., Sd − S0

)−1
(1.12)

Note that, given a metric MT , there exists several d-simplices T that are unitary equilateral in MT .

Proof : (i) MT is solution of a the linear system(
(Sj − Si)>M(Sj − Si) = 1

)
16i<j6d

(1.13)

whose unknowns are the upper triangular coefficients of M ; since T is not degenerated, this system
is invertible, so, MT is unique

(ii) since T is not degenerated, the matrix
(
S1 − S0, ..., Sd − S0

)
is invertible, so, AT is well defined;

besides, we have

‖Sj − Si‖2
A>T AT

= (Sj − Si)>A>
T AT (Sj − Si) (1.14)

= ‖AT (Sj − Si)‖2 (1.15)
= 1 (1.16)

because AT is the matrix of an affine function that transforms T in T 0; indeed, the matrix
(
S1 −

S0, ..., Sd − S0

)−1
transforms T in T̂ and the matrix

(
S0

1 , ..., S0
d

)
transforms T̂ in T 0; since MT is

unique and since matrix A>
T AT satisfies the system (1.13), we have MT = A>

T AT . �

1.2.4 Simplex quality

The quality of a k-simplex T is measured by a shape criterion [Dompierre et al. 2003].

Definition 1.3 a shape criterion is a scalar continuous function c that associates a not degenerated
simplex T to c(T ), such that

(i) 0 < c(T ) 6 1

(ii) c(T ) = 1 if and only if T is equilateral

(iii) c(T ) → 0 when T degenerates

(iv) c(T ) does not change under translation, rotation, homothety and orientation changing.
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Examples of shape criteria

c(T ) = c0
hT

ρ(T )
(1.17)

c(T ) = c0
|T |
hk

T

(1.18)

and [Baker 2000, Pébay and Baker 2001]

c(T ) =
d

κ2(MT )
(1.19)

where hT is the diameter of T (its greatest edge size), ρ(T ) is the inner radius of T , MT is the metric
associated with T (previous section) and κ2 is the conditioning operator (the greatest eigenvalue over the
smallest eigenvalue). The constant c0 is introduced, so as to make the shape criterion = 1 for equilateral
simplices.

According to [Knupp 2001], other shape criterion are either equivalent to both (1.17) and (1.18) or
equivalent to the third (1.19). Many other criteria do not satisfy the shape criterion definition.

In what concerns the topological mesh generator, the shape criterion (1.18) is used (however, hT is re-
placed by the averaged edge size). This is also the shape criterion recommended by [Dompierre et al. 2003].

1.3 Mesh

With the simplex notion in mind, we can now define the notion of simplicial mesh. For the following
chapter, we need to define a mesh not only for the computational domain Ω, but also for its boundary,
denoted by ∂Ω. That is the reason why we write the following definition for a variety O, which is, in
practice, Ω or ∂Ω.

1.3.1 Definition

Let O be a variety of Rd, whose dimension is D-1 (with 1 6 D 6 d+1). For instance, a surface in R3

is a dimension 2 variety (and D = 3). In fact, D is the number of vertices of each simplex in the future
mesh. We call D the topological dimension of the mesh, contrary to d the spatial dimension.

Definition 1.4 let N be a finite set of points belonging to O (they are called nodes) and let T be a set
of (D-1)-not degenerated simplices (they are called elements), whose vertices belong to N . We denote
by F the set of faces of those simplices. The couple (N , T ) is a mesh of O if and only if:

(i) each face of F belongs to one or two elements of T , but not more

(ii) intersection of two distinct elements of T is a k-face of both elements with

k ∈ {−1, 0, . . . , D-2} (1.20)

(iii) and
⋃

T∈T
T = O.
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Some remarks about this definition:

• condition (i) excludes manifold meshes (like the surface mesh of figure 1.1(a), where two tetrahedra
share the same edge)

• condition (ii) does not allow two distinct elements to cover each other (contrary to figure 1.1(b))

• condition (ii) forbids also any node to be in the middle of an edge (contrary to figure 1.1(c)).

(a) (b) (c)

Figure 1.1: Forbidden situations for a mesh

Some classical denominations about meshes:

• the set T is called the topology of the mesh; it is equivalent to the given of element vertices and that
information can be inverted to know the connectivity of the nodes (see section A.3.1 page 160);

• the neighbors of a node S are the other vertices of all element that S belongs to (figure 1.2(a))

• the (topological) boundary of a mesh is denoted by ∂T and contains the set of faces that belongs
to only one element.

2
S

3
S

4
S

5
S

S

6
S

1
S

(a) (b)

Figure 1.2: {S1, . . . , S6} are the neighbors of S (a) and a mesh whose boundary is not a mesh (b), because
of condition (i) violation (a point, which is a face of the 1D boundary mesh, shares 4 elements)

We note that the boundary of a mesh of Ω is not always a mesh of ∂Ω, since condition (i) may not
be satisfied (like in figure 1.2(b)). Furthermore, the topological boundary ∂T (which is a set of faces)
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should not be confused with the geometrical boundary ∂

( ⋃
T∈T

T

)
(which is a set of points). However,

with a mesh we have the following property⋃
F∈∂T

F = ∂

( ⋃
T∈T

T

)
(1.21)

It will not necessarily be true anymore, with the notion of mesh topology (definition 2.2 page 25).

1.3.2 Mesh volume

The topological mesh generator described in section 2.2 page 25 strongly rely on the computation of
mesh volume (measure).

Proposition 1.4 let (N , T ) be a mesh of Ω. The measure of this mesh is

|Ω| =
∑
T∈T

|T | (1.22)

=
1
d

∫ ⋃
F∈∂T

F
x.~n dx (1.23)

where ~n is the outgoing unitary normal vector (which is defined almost everywhere on F ).

So, we have two computation ways for the measure of the domain Ω. In particular, the formulae
(1.23) uses only the mesh boundary. The topological mesh generator relies on the fact that the equality

between
∑
T∈T

|T | and
1
d

∫ ⋃
F∈∂T

F
x.~n dx is only reached by the meshes.

Proof : from the Lebesgue measure definition and from condition (iii) of the mesh definition, we have

|Ω| =
∫

Ω
dx (1.24)

=
∫ ⋃

T∈T
T

dx (1.25)

Besides, from condition (ii) of the mesh definition, elements of T do not cover each other, so,∫ ⋃
T∈T

T
dx =

∑
T∈T

∫
T

dx (1.26)

=
∑
T∈T

|T | (1.27)

Furthermore, from Stokes theorem [Weisstein et al.], since ∇. x = div(x) = d and thanks to the fact that⋃
T∈T

T = Ω is a polytope with an orientation, we have

∫ ⋃
T∈T

T
dx =

1
d

∫ ⋃
T∈T

T
∇. x dx (1.28)

=
1
d

∫
∂

 ⋃
T∈T

T


x.~n dx (1.29)

which leads to (1.23) by combination with (1.21). �
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1.3.3 Mesh conformity

After an anisotropic adaption to a metric field M (chapter 3 page 35), the obtained mesh does never
respect perfectly the anisotropy of M . So as to quantify the conformity of a mesh with a metric field M ,
[Labbé et al. 2000, Labbé et al. 2001, Dompierre et al. 2003] have proposed a non conformity coefficient.

Let (N , T ) be a mesh, for all T ∈ T we denote by

M ′
T =

1
|T |

∫
T

M(x) dx (1.30)

the averaged value of M on T and we still denote by MT the associated metric of T (section 1.2.3 page 14).

If the mesh was perfectly conforming the metric field M , then we would have for all T ∈ T , MT = M ′
T .

It is thus proposed to look at εT , the Frobenius norm of

RT =
(
M−1

T M ′
T − I

)
︸ ︷︷ ︸
detects |T |→0

+
(
M

′−1
T MT − I

)
︸ ︷︷ ︸
detects |T |→∞

(1.31)

in other words

εT =
√

Trace
(
R>

T RT

)
(1.32)

The non conformity coefficient is then defined by

εT =
1

card(T )

∑
T∈T

εT (1.33)

In this way, one element that degenerates makes εT tend to ∞ (which is a good point, because such a
mesh is not suitable for a finite element computation).

This coefficient takes into account the size and the shape of the elements. It does not suffer from
scaling and it is defined in all dimensions. That is the reason why we use it to validate the topological
mesh generator in section 3.2 page 39.

Memory allocation coefficient

With the same notations, we can estimate the size of the mesh after adaption from the size of the
mesh before adaption and from the metric used for the adaption. We can use the actual edge sizes in the
mesh and the edge sizes prescribed by the metric to evaluate the growing factor to be used to allocate
the required workspace.

We denote by λi(MT ), the eigenvalues of MT and by λi(M ′
T ), those of M ′

T . The proposed growing
factor is the integer part +1 of

callocation =
1

card(T )

∑
T∈T

d∏
i=1

√
λi(M ′

T )
λi(MT )

(1.34)

In practice, this growing factor overestimates the workspace needed for the refining or the coarsening.
It gives only a useful upper bound.



Chapter 2

Meshing a domain from a mesh of its
boundary

In this chapter, we deal with the following question: given a mesh of the boundary ∂Ω, how to build
a mesh of Ω itself? We focus our attention on unstructured meshes composed of simplices.

In 3D, there exists four major ways to answer this question. Classical ways are: meshing by tree,
advancing front and Delaunay method (section 2.1). The fourth way is the topological mesh generator,
which has been introduced by [Coupez 1991]. There are several advantages to use the latter (section 2.2).

2.1 State of the art: three classical methods

Let us recall the three classical mesh generation methods.

2.1.1 Meshing by tree

Introduced by [Yerry and Shephard 1983], the meshing technique by tree is widely used, even in 3D
[Tchon et al. 2003].

A mother cell (a rectangle in 2D or a parallelepiped in 3D), englobing the domain Ω, is considered.
The first step is to decompose recursively each cell containing several nodes in 2d equivalent cells (fig-
ure 2.1(b)). A simple convergence criterion of this process could be: each cell contains not more that one
node. It gives a tree structure with 2d branches, that is, a quadtree in 2D and an octree in 3D.

Then, the method consists in:

• removing exterior cells

• triangulating the cells that contain one node with respect to the boundary mesh

• removing exterior elements

• triangulating empty cells, whose vertices are new nodes (figure 2.1(c)).

With this technique, some problems may be faced:

• one node could lie near the border or at the corner of a cell, which could lead to bad quality elements

• the aforementioned convergence criterion is too poor, because a cell could contain one node and be
traversed by another face

• numerous useless nodes are introduced on the boundary

19
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(a) (b) (c)

Figure 2.1: Quadtree (from [Frey and George 1999])

• to avoid an ill balanced tree, the 2 : 1 rule is often enforced (this rules stipulates that the size fac-
tor between two adjacent cells is not more than 2), which introduces far too much nodes in the mesh.

However, the principal advantage of this technique is the tree structure, which is very useful (especially
for localization computations in the mesh). Its main drawback is the quasi impossibility to deal with
anisotropic elements.

2.1.2 Advancing front

Introduced by [Lo 1985], the advancing front method is also widely used and one could cite, for ex-
ample, the work of [Bonet and Peraire 1991].

In this method, new nodes are created by connecting them to existing elements, with an equilateral
goal. A set of faces, which is said to be the front, scans progressively all the domain Ω (figure 2.2 steps i
to iii). The process stops when the front is empty, that is, when the domain is completely triangulated
(figure 2.2 step iv).

More precisely, major steps of the method are the following:

• initially, the front is the mesh of the boundary

• then, a good quality element is built from a face of the front (a new node can be introduced)

• if this new element intersects the mesh already built, then another node is chosen, otherwise the
element is added in the mesh

• we get a new front and the process is iterated, while the front is not empty.

Major difficulties encountered by this techniques are summarized by these questions:

• which face to choose among those of the front?

• how to determine the best position of a new node? (especially in 3D)

• how to determine efficiently if an element intersects the mesh?
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Figure 2.2: Advancing front in 2D (from [Frey and George 1999])

In what concerns the front face choice, the smallest one or the poorest one could be chosen. In what
concerns the position of a new node, candidates are (in descending priority order): surrounding existing
nodes, the optimal node(s) (attaining the best reachable quality) and, finally, candidates given a priori.
In what concerns the intersection computation, also called front collision, it is generally a costly opera-
tion. An efficient localization computation is needed (see page 24).

The advancing front is the best technique to produced good quality elements. However, the draw-
backs of this method are: the front can be very noisy (even for simple geometry, especially in 3D) and
convergence may not be attained (except in 2D). Robustness is not ensured with the advancing front
technique.
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2.1.3 Delaunay method

Before the Delaunay mesh generator is detailled, some important results are given here (proofs are
available in [George and Borouchaki 1997]).

2.1.3.1 Delaunay triangulation

Firstly, let us look at the existence and the construction of a mesh from a point cloud. Let N be a
finite set of points (Si)16i6n from Rd.

Definition 2.1 before we talk about Delaunay triangulation, we introduce the Voronöı diagram with
those definitions:

• a d-convex polytope is the convex hull of several points from Rd (it generalizes the notion of convex
polygon in 2D and of convex polyhedron in 3D)

• the Voronöı diagram of N is the set of all d-convex polytopes (Vi)16i6n called Voronöı cells and
defined by

Vi =
{

x ∈ Rd,∀j 6= i ‖Six‖2 6 ‖Sjx‖2

}
(2.1)

that is, the points that are closer to Si than to any other Sj .

A Voronöı diagram has several very interesting properties.

Proposition 2.1 • the Voronöı cells cover Rd, without covering each other (figure 2.3 on the left)

• if the points of N are not cocyclical (that is, d + 2 of them are never aligned on the same ball),
then the dual T of the Voronöı diagram is a set of simplices

• otherwise this dual contains some d-polytopes, which could be decomposed in simplices, so as to
obtain a set of simplices, still denoted by T

• T is called the Delaunay triangulation and constitutes, with N , a mesh of the convex hull of N
(figure 2.3 on the right).

Figure 2.3: Voronöı diagram of a set of points and corresponding Delaunay triangulation in 2D (from
[Frey and George 1999])

In fact, to construct the Delaunay triangulation, the Voronöı diagram is not required. In practice,
the following criterion is used to obtain a Delaunay triangulation.

Theorem 2.1 (Delaunay criterion) Let T be a triangulation of the convex hull of N . T is a Delaunay
triangulation of N if and only if the interior of the outer ball of each element does not contain any node.

The problem is that Ω is rarely the convex hull of the nodes N . So, we need to modify the dual of
the Voronöı diagram, so as to obtain a mesh of Ω (next section).
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2.1.3.2 Delaunay mesh generation

A Delaunay mesh generation method consists in:

• triangulating the convex hull of the nodes (figure 2.4(a)) in two steps:

– triangulate a bounding box containing all the nodes in its interior (in 2D, this bounding box
is a rectangular decomposed in two triangles, while in 3D, it is a parallelepiped decomposed
in 5 or 6 tetrahedra)

– introducing each node Sn one by one, in the triangulation by using the Delaunay kernel:

∗ remove all elements whose outer ball contains S (these adjacent elements forms the De-
launay cavity)

∗ add new elements built with S and the remaining faces of the removed elements (this
operation is called the star operation)

• making the boundary mesh to be respected by:

– edge swapping in 2D (figure 2.4(b)) or edge and face swapping in 3D

– introduction of new nodes if required

• removing exterior elements (by coloring).

Coloring the exterior elements can be achieved by:

• choosing a vertex of the bounding box

• considering all elements of this vertex as exterior

• adjacent elements, except through a boundary face, are also exterior.

We get one connex compound by this first pass. Several passes are required to get all the connex com-
pounds of the exterior.

This technique raises several difficulties:

• centers and radii of all outer balls have to be computed and stored (this computation involves a
linear system inversion; except if transport of those quantities is possible)

• the Delaunay cavity is not that easy to compute, because it may involve complex situations

• several algorithm steps require the localization of a point in the triangulation (see the following
paragraph)

• in 2D, the boundary can always be recovered, because edge swapping can visit all possibilities;
but in 3D, it is no more the case and boundary recovering can be impossible without relaxing the
boundary mesh

• a special tetrahedron, called a sliver , who tends to degenerate (without any edge or face degen-
erating) and who still satisfies the Delaunay criterion (this criterion is not a quality criterion);
unfortunately in 3D, a Delaunay mesh generator can introduce such undesirable elements in the
mesh.
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(a)

(b)

Figure 2.4: Delaunay method in 2D: triangulation of the convex hull (a) and recovering of the boundary
(b) (from [Ern and Guermond 2002])

The localization of a point S (which is always a costly operation) can be efficiently driven as follows:

• let T be an element that does not contain S, then S sees at least one face F of T ; the other element,
to which F belongs is tested and we continue until we find an element containing S (it works well
when we have a mesh of the convex hull of the domain (because there is no hole between S and T ),
which is the case with a Delaunay mesh generator)

• if S sees several faces F , then one of them is chosen randomly (otherwise it could loop forever)

• the first tested element T should not be far away from S, thus, a tree structure of initial elements
(even coarse) would be helpful.

A robust and very efficient implementation of such a Delaunay mesh generator has been achieved at
INRIA Rocquencourt by the Gamma team. But this approach is very technical and a neophyte would
face a lot of numerical errors (especially in what concerns geometrical computations, like centers and
radii of outer balls).
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2.2 Topological optimization

The three preceding techniques are often coupled with a last step that consists in improving the
quality of the mesh (like a Laplacian smoothing [Frey and Field 1991] or a more elaborated method).
The alternative, depicted in this section, relies only on that optimization step. The method has been
introduced by [Coupez 1991], when all current 3D mesh generators were investigated.

This method is the topological mesh generator, already described in [Coupez 2000] and also in
[Coupez and Bigot 2000]. Here, we propose a new and more general description.

2.2.1 Mathematical background

Before the algorithm is detailed, let us prove that a mesh is the solution of an optimization problem,
which justifies the use an optimization strategy to build it.

2.2.1.1 Mesh topology

A mesh is a very difficult objet to construct directly (especially when d > 3). Let us consider the less
constrained objet of the following definition.

Definition 2.2 let N be a finite set of nodes from Ω, let T be a set of d-simplices whose vertices belong
to N . We denote by F the set of faces of those simplices. T is a mesh topology of Ω if and only if:

(i) each face of F belongs to one or two elements of T , but not more

(ii) and (N , ∂T ) is a mesh of the boundary ∂Ω.

Of course, the topology of a mesh is a mesh topology (except when condition (iii) of definition 1.4
is not fulfilled for the mesh of the boundary). Our goal is to exhibit a sufficient condition for a mesh
topology to be a mesh.

Some remarks about this definition:

• condition (i) is the same than condition (i) of the mesh definition

• again, in condition (ii), the boundary ∂T of a mesh topology T is the set of faces that belongs to
only one element.

Only one operator is needed to build a mesh topology, namely the star operator. It consists in
connecting one node S to a set of faces F , by considering

T ∗(S,F) = {convex hull of {S} ∪ F , where F ∈ F and S /∈ F} (2.2)

The following property says that the star operator build a mesh topology when the faces are the
boundary of a volume.

Proposition 2.2 let S be a node and F be a set of faces. If F is a mesh topology without boundary
(that is, ∂F = ∅), then T ∗(S,F) is a mesh topology and its boundary is ∂ (T ∗(S,F)) = F .

Note that this property uses a mesh topology with a set of (d-1)-simplices (containing the faces). For
this case, the definition is the same than definition 2.2.
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Proof : suppose that there exists F0 a face of T ∗(S,F) who belongs to three elements: T , T ′ and T ′′,
which are convex hulls of {S} and respectively F , F ′ et F ′′. Then, we have F∩F0 = F ′∩F0 = F ′′∩F0 = G.
In this context, G belongs to three distinct elements of F , which is impossible because F is a mesh topol-
ogy.

Furthermore, by construction we have F ⊂ ∂T ∗(S,F). For the reverse inclusion, suppose that there
exists a face F of ∂T ∗(S,F), such that F /∈ F . Then F is a face of the convex hull of {S} ∪ F ′, where
F ′ ∈ F . We denote by G the intersection F ∩ F ′. As F is without boundary, there exists F ′′ 6= F ′ ∈ F ,
such that G belong to F ′ and F ′′. In this context, F belong to the convex hull of {S}∪F ′ and of {S}∪F ′′,
which are distinct. So, F /∈ ∂T ∗(S,F), which is impossible. �

2.2.1.2 Minimal volume theorem

Thanks to condition (ii) of definition 2.2, we always have

|Ω| = 1
d

∫ ⋃
F∈∂T

F
x.~n dx (2.3)

However, the elements of a mesh topology can be degenerated, can cover each other and can run outside
the domain Ω. So, with this definition we do not have |Ω| =

∑
T∈T

|T |, but only the following result.

Lemma 2.1 if T is a mesh topology of Ω, then

Ω ⊂
⋃

T∈T
T (2.4)

In other words, thanks to condition (ii) of definition 2.2, each point of the computational domain Ω
lies inside, at least, one element of T .

Proof : let us consider the front series (Γn)n∈N and the topology series (Tn)n∈N defined by:{
Γ0 = ∂T
T0 = ∅ (2.5)

∀n ∈ N if Γn = ∅ then
{

Γn+1 = Γn

Tn+1 = Tn
(2.6)

otherwise
{

Γn+1 = Γn M ∂{Tn}
Tn+1 = Tn ∪ {Tn}

(2.7)

where Tn is an element of T \Tn who has one face belonging to Γn. In this proof, we use the set operator
M defined by A M B = (A ∪B)\(A ∩B).

In other words, we consider an advancing front that scans progressively the mesh topology, from the
boundary. Our goal is to prove that this front scans all points of Ω.

Since T is a finite set, there exists N ∈ N, such that ΓN−1 6= ∅ and such that ∀n > N Γn = ∅.
Firstly, we can prove that

∀ 0 6 n < N Γn = ∂(T \Tn) (2.8)

which ensures that the front series is well defined. For n = 0, we have Γ0 = ∂T = ∂(T \T0), since T0 = ∅.
For 0 6 n < N , we suppose that Γn = ∂(T \Tn) et we prove that Γn+1 = ∂(T \Tn+1).
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Let us start by Γn+1 ⊂ ∂(T \Tn+1). We take F ∈ Γn+1 and we distinguish two cases:

• if F ∈ Γn, then F /∈ ∂{Tn} (since Γn+1 = Γn M ∂{Tn}). So, there exists a unique element T in
T \Tn, different from Tn and such that F ∈ ∂{T}. Thus,

F ∈ ∂(T \Tn\{Tn}) = ∂(T \Tn+1) (2.9)

• if F /∈ Γn, then F ∈ ∂{Tn} and F /∈ ∂T . So, condition (i) of definition 2.2 allows us to say that
there exists only one element T of T , different from Tn and such that F ∈ ∂{T}; we have T /∈ Tn,
otherwise F ∈ ∂(T \Tn) = Γn. Thus,

F ∈ ∂(T \Tn\{Tn}) = ∂(T \Tn+1) (2.10)

Now, we have to treat the reverse inclusion ∂(T \Tn+1) ⊂ Γn+1. We take F ∈ ∂(T \Tn+1) and we
know that there exists a unique element T ∈ T \Tn\{Tn}, such that F ∈ ∂{T}. Again, we distinguish
two cases:

• if F ∈ ∂{Tn}, then F /∈ ∂(T \Tn), since T ∈ T \Tn and Tn ∈ T \Tn, so

F ∈ ∂(T \Tn) M {Tn} = Γn M {Tn} = Γn+1 (2.11)

• if F /∈ ∂{Tn}, then T is unique in T \Tn, so, F ∈ ∂(T \Tn), thus

F ∈ ∂(T \Tn) M {Tn} = Γn M {Tn} = Γn+1 (2.12)

We get the equality (2.8). Thus, the front series (Γn)n∈N is well defined (because, if Γn 6= ∅, then
∂(T \Tn) 6= ∅, so, there exists Tn /∈ Tn such that Γn ∩ ∂{Tn} 6= ∅).

Secondly, we prove that

∀ 0 6 n < N ∂(Ω M T0 M . . . M Tn−1) ⊂
⋃

F∈Γn

F (2.13)

which gives an upper bound (for the set relationship order) of Ω\(T0 ∪ . . . ∪ TN ), by the empty set. For
n = 0, since (N , ∂T ) is a mesh of ∂Ω, we have ∂Ω =

⋃
F∈∂T

F =
⋃

F∈Γ0

F . For 0 6 n < N , we assume that

∂(Ω M T0 M . . . M Tn−1) ⊂
⋃

F∈Γn

F (2.14)

and we prove that

∂(Ω M T0 M . . . M Tn) ⊂
⋃

F∈Γn+1

F (2.15)

Let us begin with the proof of(
∂(Ω M T0 M . . . M Tn−1) M ∂Tn

)
⊂

⋃
F∈Γn+1

F (2.16)

We take a point x ∈
(
∂(Ω M T0 M . . . M Tn−1) M ∂Tn

)
and we distinguish two cases:

• if x ∈ ∂(Ω M T0 M . . . M Tn−1) and x /∈ ∂Tn, then there exists F ∈ Γn, such that x ∈ F and such
that ∀F ′ ∈ ∂{Tn} we have x /∈ F ′, so, F ∈ Γn+1

• if x /∈ ∂(Ω M T0 M . . . M Tn−1) and x ∈ ∂Tn, then there exists F ∈ ∂{Tn}, such that x ∈ F and such
that ∀F ′ ∈ Γn we have x /∈ F , so, F ∈ Γn+1.
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Next, since
⋃

F∈Γn+1

F is a closed set, the inclusion (2.16) is also valid for the closure

∂(Ω M T0 M . . . M Tn−1) M ∂Tn ⊂
⋃

F∈Γn+1

F (2.17)

We use the formulae ∂(A M B) = ∂A M ∂B, so as to obtain (2.15).

Thus, we have recursively proved that

∂(Ω M T0 M . . . M TN ) ⊂
⋃

F∈ΓN

F = ∅ (2.18)

and, as (Ω M T0 M . . . M TN ) is a bounded set, it comes Ω M T0 M . . . M TN = ∅.

Lastly, since (A\B) ⊂ (A M B), we have proved that

(Ω\(T0 ∪ . . . ∪ TN )) ⊂ (Ω M T0 M . . . M TN ) (2.19)

Thus, Ω\(T0 ∪ . . . ∪ TN ) = ∅. �

Thanks to this lemma, we do not need the orientation assumption of the mesh topology, contrary to
[Coupez 2000], in what concerns the proof of the following theorem.

Theorem 2.2 let T be a mesh topology whose vertices are N , a finite node set of Ω. (N , T ) is a mesh
of Ω if and only if the simplices of T are not degenerated and∑

T∈T
|T | = |Ω| (2.20)

In other words, among all mesh topologies, meshes are those who satisfy the equality (2.20), also
known as the minimal volume criterion.

Proof : we only have to prove that if
∑
T∈T

|T | = |Ω| then (N , T ) is a mesh of Ω. Condition (i) of the

mesh definition 1.4 being already satisfied, we have to treat conditions (ii) and (iii).

Firstly, let us suppose that
⋃

T∈T
T 6= Ω. Since Ω ⊂

⋃
T∈T

T , it would come

∣∣∣∣∣ ⋃
T∈T

T

∣∣∣∣∣ > |Ω|. But, we still

have
∑
T∈T

|T | >

∣∣∣∣∣ ⋃
T∈T

T

∣∣∣∣∣, which would raise a contradiction. Thus, condition (ii) is satisfied.

Secondly, let us suppose that there exists T1 6= T2 ∈ T such that T̊1 ∩ T̊2 6= ∅. Then, we would have

|T1| + |T2| > |T1 ∪ T2|. We would obtain
∑
T∈T

|T | >

∣∣∣∣∣ ⋃
T∈T

T

∣∣∣∣∣, which would raise the same contradiction.

Thus, elements do not cover each other.

Thirdly, let us suppose that there exists T1 6= T2 ∈ T , such that ∂T1∩∂T2 is not a k-face of T1 and T2

with k ∈ {−1, 0, . . . , d-1}. We could denote by F1 a face de T1 and by F2 a face of T2, such that F1 ∩ F2

would not be a k-face of F1 and F2, with k ∈ {−1, 0, . . . , d-2}. If F1 /∈ ∂{T }, then there would exists
T3 ∈ T \{T1, T2}, with F1 as a face of T3. Since T3 is not degenerated, T3 would cover T2, which raises the
same contradiction. So, we have F1 ∈ ∂T and, by the same way, we have F2 ∈ ∂T . But, since F1 ∩ F2 is
not supposed to be a k-face of F1 and F2, with k ∈ {−1, 0, . . . , d-2}, (N , ∂T ) could not be a mesh of ∂Ω.
This contradiction with condition (ii) of the mesh topology definition, induces the condition (iii) of the
mesh definition. �
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2.2.1.3 Shape criterion and order relationship

In the next section, from two distinct mesh topologies with the same volume, we shall prefer the
one whose elements show a better quality. The quality of a simplex T can be measured with the shape
criterion

c(T ) = c0
|T |

h(T )d
(2.21)

where h(T ) is the averaged edge size.

This shape criterion allows the introduction of a relationship order between mesh topologies.

Definition 2.3 let T1 =
(
T i

1

)
16i6I1

and T2 =
(
T i

2

)
16i6I2

be two mesh topologies, whose elements are
ordered such that

∀ 1 6 i1 < i2 6 Ij c(T i1
j ) 6 c(T i2

j ) (2.22)

(in other words, elements of mesh topologies T1 and T2 are orderer by ascending shape criterion, in order
to compare worst elements at first). We consider the lexicographical order , denoted by < and defined by

T1 < T2 ⇔ ∃ 1 6 i0 6 min(I1, I2), such that
{
∀ i < i0 c(T i

1) = c(T i
2)

and c(T i0
1 ) < c(T i0

2 )
(2.23)

2.2.2 Mesh generation

Now we can propose a technique to build a mesh of Ω from a mesh of ∂Ω. In fact, like in the Delaunay
method, we proceed by local cut-and-past operations.

2.2.2.1 Local topology optimization

For the following algorithm, we make the assumption that the boundary of Ω is connex. However, this
assumption can be removed with the mesh generation approach, derived from the multidomain metric
(section 7.4 page 132).

Algorithm 2.1 let (N , ∂T ) be a mesh of ∂Ω, the topological mesh generator proceeds like this:

– build a very first mesh topology T = T ∗(S0, ∂T ) of Ω, where S0 is a node of the boundary mesh
(if Ω is not convex, then (N , T ) is not a valid mesh, like on figure 2.5 top left)

while the minimal volume is not reached do
for each node and each edge do

– remove the local topology Tc around this node or this edge (a cavity)
– replace it by a topology Te that minimizes the volume

∑
T∈T

|T |

and that is maximal in the relationship order (2.23),
among all candidates generated by the star operator

done
done

Iterating around each node and each edge is enough. There is no need to iterate around each element.
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Figure 2.5: Mesh generation by topological optimization in 2D

The local topology Tc around a node S is composed by the elements of T , whose all vertices belong to
S = {S}∪N (S), where N (S) is the neighborhood of S (according to this definition, the triangle S1S5S6

on figure 2.6(a) belongs to Tc). In this case, candidates for Te are the topologies T ∗(S′′, ∂Tc), where S′′
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Figure 2.6: The local topology Tc around a node S (a) and two candidates for Te (b-c).

is:

• S itself (which leads to the elimination of S6 on figure 2.6)

• one of the vertices of ∂Tc (elimination of S and S6)

• or C, the center of vertices of ∂Tc (position smoothing of S and elimination of S6).
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The local topology Tc around an edge [S, S′] is composed by the elements of T , whose all vertices
belong to S = {S, S′} ∪ N (S, S′), where N (S, S′) = N (S) ∩ N (S′) (as on figure 2.7(a)). In this case,
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Figure 2.7: The local topology Tc around an edge [S, S′] (a) and three candidates for Te (b-d).

candidates for Te are the topologies T ∗(S′′, ∂Tc), where S′′ is:

• S or S′ themselves (elimination of S3 on figure 2.7)

• one of the vertices of ∂Tc (edge swapping)

• or C, the middle of the edge [S, S′] (introduction of a new node).

2.2.2.2 Convergence

Empirically, algorithm 2.1 always reaches the minimal volume |Ω| (which is computed by (2.3)
page 26). According to theorem 2.2, (N , T ) is then a valid mesh of Ω (as on figure 2.5 bottom right).

Unfortunately, there is no convergence theorem at that time. However, the cut and paste operation
is legal (for all dimension d), since we have the following result (already mentioned in [Coupez 2000] and
completed here).

Proposition 2.3 with the notations of algorithm 2.1, we denote by Tf the elements of T whose all
vertices except one, belong to S (figure 2.8). If:

(i) ∂Tc is a mesh topology,

(ii) all faces that compose ∂Tc are also faces of Tf s whose all vertices belong to S,

then the new topology T \Tc ∪ Te is also a mesh topology of Ω.

In other words, after the cut and past operation, we still have a mesh topology (except when condi-
tion (ii) is not satisfied).
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Figure 2.8: Tc is in normal lines, ∂Tc in bold lines, Te in dotted lines and Tf in dashed lines

Proof : let us suppose that there exists F , a face of T \Tc ∪ Te that shares strictly more than two
elements. Firstly, since ∂Tc is a mesh topology (condition (i)), T \Tc and Te are also mesh topologies.
So, F would necessarily be a face of T \Tc and a face of Te.

Secondly, let T be an element of T \Tc, with F as a face. Since T /∈ Tc, all vertices of T could not
belong to {S} ∪ N (S). Since F is a face of Te, all vertices of F would belong to {S} ∪ N (S). Since F is
a face of T , it would come T ∈ Tf . So, condition (ii) would say that F belongs to ∂Tc.

Thirdly, since F ∈ ∂Tc, we would have F ∈ ∂T or F ∈ ∂(T \Tc), but in both cases, F would not
belong to more that one simplex of T \Tc. Furthermore, lemma 2.2 says that ∂Te = ∂Tc, so, F would not
share more than one simplex of Te, which raises a contradiction. Thus, no face of T \Tc ∪ Te can share
more than two elements.

Fourthly, we still have to prove that ∂(T \Tc ∪ Te) = ∂T . In what concerns the first inclusion
∂T ⊂ ∂(T \Tc ∪ Te), we consider a face F ∈ ∂T . There exists a unique element T ∈ T , such that
F ∈ ∂{T}. Then, we distinguish two cases:

• if T /∈ Tc, then F /∈ ∂Tc, so, ∀T ′ ∈ Te F /∈ ∂{T ′}; thus, T is unique in T \Tc ∪ Te

• if T ∈ Tc, then F ∈ ∂Tc (since T is unique in Tc), so, there exists a unique element T ′ ∈ Te, such
that F ∈ ∂{T ′}; since ∀T ′′ ∈ T \Tc F /∈ ∂{T ′′}, T ′ is unique in T \Tc ∪ Te.

In what concerns the reverse inclusion ∂(T \Tc ∪ Te) ⊂ ∂T , we consider a face F ∈ ∂(T \Tc ∪ Te).
There exists a unique element T ∈ T \Tc ∪ Te, such that F ∈ ∂{T}. Again, we distinguish two cases:

• if T /∈ Te, then T ∈ T \Tc and F /∈ ∂Te; we would have ∀T ′ ∈ Tc F /∈ {T ′}, otherwise, T ′ would
be unique in Tc (because of the presence of T in T ); thus, F ∈ ∂Tc, which is impossible because
∂Te = ∂Tc (lemma 2.2)

• if T ∈ Te then F ∈ ∂Te = ∂Tc (lemma 2.2); so, there exists a unique element T ′ ∈ Tc, such
that F ∈ ∂{T ′}; by construction, we have Te ∩ (T \Tc) = ∅; since T is unique in T \Tc ∪ Te,
∀T ′′ ∈ T \Tc F /∈ ∂{T ′′}; thus, T ′ is unique in T . �

In practice, the assumption (ii) is not always satisfied, but, surprisingly enough, the topological mesh
is always able to correct those ill-posed situations.
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2.2.2.3 Boundary treatment

With the star operator:

• a node S can be eliminated or smoothed, but only if S is not a vertex of ∂Tc

• an edge [S, S′] can be swapped and a node C can be introduced, but only if [S, S′] is not an edge
of ∂Tc.

Unfortunately, when S is a boundary node, S is always a vertex of ∂Tc, though we would like to be able
to eliminate or smooth it. This is also the case for a boundary edge [S, S′].

A solution to make it possible for a boundary node S not to be a vertex of ∂Tc, is to connect all
boundary faces F ∈ ∂T to a fictitious node (the node 0 on figure 2.9). We obtain new elements, that do

0

Figure 2.9: A mesh topology without boundary, obtained by connecting old boundary faces to the node
0, so as to form virtual elements (in dashed lines)

not directly participate to the mesh. They are said to be virtual elements. In this way, the topology is
without boundary (∂T = ∅). The real boundary is still there, it is simply defined by the set of faces that
are connected to node 0 (via the virtual elements).

Virtual elements do not participate to the computation of the volume
∑
T∈T

|T | and, during the algo-

rithm 2.1, node 0 has locally the same coordinates than node S. Thus, boundary nodes can be eliminated,
smoothed or introduced and boundary edges can be swapped, if it does not induce volume changing.
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2.3 Conclusion

The mesh generation by topological optimization does not try to generate directly a mesh, instead, it
generates a simple mesh topology that is progressively improved, until it becomes a mesh. This method
operates iteratively, contrary to the direct methods (tree method, advancing front and Delaunay), whose
benefits and drawbacks are summarized in table 2.1 (limited to the context of material forming).

mesh generator benefits drawbacks
- a very useful tree structure - many nodes introduced

tree method - good mesh inside - poor boundary mesh
- poor anisotropy possibilities

advancing front - best geometrical quality - convergence problems
(unconstrained) of the generated elements (noisy front)

- difficulties to recover the boundary
Delaunay method - very efficient - poor quality elements can be

generated (slivers)
- very robust

topological optimization - dimension-independent (4D) - quite slow
- simple implementation

Table 2.1: Comparison between mesh generation techniques

The topological mesh generator is not that easy to understand, but quite simple to implement. Indeed,
only topological operations are performed by the algorithm 2.1 and this kind of operations are less subject
to numerical roundoff errors than geometrical operations (which are intensively used by a Delaunay mesh
generator, for instance). Furthermore, node 0 introduction allows the treatment of boundary nodes and
boundary edges as if they were inside the domain. There is no specific treatment, which simplifies the
implementation.

Besides, operations in algorithm 2.1 are local and dimension-independent, thus, the topological mesh
generator has been parallelized [Coupez et al. 2000] and has succeeded in 4D mesh generation (see ap-
pendix A.3.3 page 161). 4D meshes shall be useful for space-time solvers, dedicated to equations formu-
lated on Ω× [0, T ]. This 4D mesh generation is (as far as we know) a first attempt in unstructured mesh
generation.

However, the topological mesh generator is an heuristical approach, that succeeds in all tested cases
(up to now). This robustness is mainly due to the optimization strategy chosen by [Coupez 1991].

Eventually, the algorithm of the topological mesh generator costs more than a Delaunay mesh gener-
ator, because much more topologies are tested. But the idea to treat a mesh by a local optimization, is
easily extended to the anisotropic adaption in the next chapter.



Chapter 3

Mesh adaption driven by a metric field

Once the first mesh of the domain Ω has been built, by one of the preceding methods, the next
question is: how to improve this mesh, so that it becomes suitable for a solver?

In fact, the first mesh is often not fine enough (as on figure 2.5 bottom right). We need to refine
it, which implies the introduction of several element layers through the thickness, so as to well capture
phenomena. Unfortunately, isotropic meshes with several element layers through the thickness lead to
dozens of 106 nodes, which implies too many degrees of freedom for an implicit solver on a single work-
station.

In our case, the solver can deal with an anisotropic mesh, where element stretching is operated in
the low gradient directions. Chapter 4 describes a possible method to generate anisotropic meshes with
several element layer through the thickness. Techniques without metrics are possible, but the method of
interest relies on the computation of a metric field.

The aim of this chapter is to point out the existing methods in mesh adaption to a metric field. Those
methods can proceed by optimization (section 3.2) or by a complete mesh regeneration (section 3.1).

We remark that the metric field can be:

• constant on the domain Ω, so that we stay in an Euclidian framework

• heterogeneous over Ω, so that we leave the Euclidian framework (without being in a Riemannian
framework, due to the lack of regularity)

• isotropic (in other words, proportional to the identity matrix:
I

h2
, where h is the mesh size field)

• or truly anisotropic (orthotropic, in fact).

35
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3.1 State of the art: an hybrid Delaunay / advancing front method

Basically, a Delaunay method do not introduce new nodes during the mesh generation process (except
Steiner points that are necessary in 3D, for the boundary recovering). To enrich a Delaunay mesh, a
coupling with one of the following techniques is needed:

• introduction of new nodes at the center of too big elements

• cutting of too big edges

• introduction of new nodes by the advancing front method.

Experience of [George and Borouchaki 2002] shows that the best technique is the introduction of new
nodes by the advancing front method (next section).

3.1.1 Constrained advancing front

In section 2.1.2 page 20 the front is advancing in the void. This is the unconstrained advancing front.
The major drawback of this technique is the non convergence problem, in most complex 3D situations.

Fortunately, a front can also advance in an already meshed domain, which is called the constrained
advancing front (figure 3.1). Elements of the initial mesh are considered as bad ones and elements gen-

Figure 3.1: Constrained advancing front in 2D (from [Ern and Guermond 2002])

erated by the constrained advancing front as good ones. The front is then the set of faces that separate
good elements from bad ones.

The steps of the constrained advancing front method are almost the same:

• initially the front is the boundary mesh

• then, a good quality element is built from a front face (with the possible introduction of a new
node)

• this new node is inserted by the Delaunay kernel (which implies that there is no need to deal with
any front collision)

• we get a new front and the method is repeated while the front is not empty

• the resulting mesh can be optimized.

The method do no more suffer from any convergence problem, since at each step a valid mesh of Ω is
obtained.
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3.1.2 Algorithm modifications

Deep modifications [Borouchaki and George 2000] are needed to make this hybrid Delaunay / ad-
vancing front method compliant with a metric field:

• in the advancing front algorithm, the best point chosen to construct a good quality element from a
front face is no more unique: in each vertex S of that face, there is a metric M(S) with which we
can compute a point P (M(S)); the provisory candidate is the center of all these candidates

• but, if the edges obtained with this provisory candidate do not all have a size equal to 1, then new
candidates P (M(S)) are considered, which are the points at length 1 on these edges; this selection
process is repeated until convergence (which may take several iterations)

• then, the retained candidate S, is inserted by the anisotropic Delaunay kernel: this time, the cavity
around S is defined by the set of all elements (with vertices S0, . . . , Sd), such that all there outer
elliptic balls (respectively evaluated in metrics M(S), M(S0), . . ., M(Sd)) contain S

• eventually, in what concerns the optimization step, the quality criterion of an element with vertices
S0, . . . , Sd is considered to be the weaker quality criterion, among those evaluated in the metrics
M(S0), . . . ,M(Sd).

The adaption strategy adopted by [George and Borouchaki 2002] is then the following:

• boundary extraction of the previous mesh

• anisotropic remeshing of this boundary [Castro-Dı́az and Hecht 1995]

• building of a new mesh for the domain (with recovering of the remeshed boundary), according to
the anisotropy defined by the metric field M (which is still interpolated on the old mesh).

Since the old mesh is used as a background mesh dedicated to the interpolation of M , lots of lo-
calizations are involved, so as to evaluate the metric field on new points. Besides, the linear matrix
interpolations are not performed directly on the metric field M but rather on M−1/2, which is more
accurate (see appendix A.1.3.1 page 148), but also more expensive.



38 CHAPTER 3. MESH ADAPTION DRIVEN BY A METRIC FIELD

The obtained results (figure 3.2) are very impressive, since a good conformity seems to be achieved

Figure 3.2: Anisotropic mesh adaption by an hybrid Delaunay / advancing front method, the initial mesh
on the left and the final mesh (after 8 iterations) on the right, from [Alauzet 2003] (bottom figures are
sectional views)

and the element anisotropy is real. However, the algorithm changes and the method coupling are very
technical and time consuming, in what concerns the development phase.
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3.2 Topological optimization

Anisotropic adaption by optimization is much more simple. Several teams have been identified in this
research field, such as [Tam et al. 2000, Pain et al. 2001, Remacle et al. 2002, Bottasso 2004] in 3D and
[Dompierre et al. 2002] in 2D. But, the first approach can be granted to [Coupez 2000], whose technique
is exposed hereafter.

3.2.1 Anisotropic optimization strategy

The optimization strategy, presented here, uses:

• a relationship order, instead of a cost function

• the star operator and no other operator

• a simple interpolation between metrics, which surprisingly reveals to be the most accurate (in our
context).

3.2.1.1 Anisotropic shape criterion and size criterion

Thanks to the topological mesh generation (or other technique, in fact), the minimal volume has been
reached. Now, we have to conserve this minimal volume and to improve the element quality, so that these
elements become conform to the metric field M . So as to evaluate the element quality in the metric field
M , we need to define an anisotropic shape criterion.

Definition 3.1 the anisotropic shape criterion used to measure the quality of an element T , with vertices
S0, . . . , Sd, is

c0

|T |M(T )

hd
M(T )

(3.1)

where

the averaged metric is M(T ) =
1

d + 1

d∑
i=0

M(Si) (3.2)

the Euclidian volume is |T |M(T ) = |T |
√

det(M(T )) (3.3)

the L2 averaged size is hM(T ) =

 2
d(d + 1)

∑
06i<j6d

‖Sj − Si‖2
M(T )

1/2

(3.4)

and the normalization factor is c0 =
d!√
d + 1

2d/2 (3.5)

the classical notation, ‖x‖2
M = x>Mx, being used.

Some remarks about this shape criterion:

• we work with a metric M(T ) that is constant on the element T

• volumes and lengths are thus evaluated in a Euclidian framework (but not canonical, except when
M is the identity matrix)

• h(T ) in not the diameter of T ; however, considering the averaged size and not the maximal length,
makes it possible to distinguish between two elements with the same diameter but with different
edge sizes (besides the fact that they have different volumes)
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• c0 is such that (3.1) is equal to 1 when T is equilateral in the metric M(T ) (see section A.2.3
page 159)

• it has been proved by [Dompierre et al. 2003] that this anisotropic criterion shows great properties.

Furthermore, in order to introduce or to remove enough nodes before the quality optimization, we
use the size criterion

min

(
hd

M(T ),
1

hd
M(T )

)
(3.6)

Finally, we use the quality criterion c(T ), defined as the minimum between the shape criterion (3.1) and
the size criterion (3.6)

c(T ) = min

(
c0

|T |M(T )

hd
M(T )

, hd
M(T ),

1
hd

M(T )

)
(3.7)

3.2.1.2 Order relationship between local topologies

This quality criterion enables the introduction of the same relationship order, than in section 2.2.1.3
page 29. This relationship order is dedicated to the comparison between candidate topologies Te for
replacing the old topology Tc, in the cut-and-past process of algorithm 2.1 page 29.

Definition 3.2 let T1 =
(
T i

1

)
16i6I1

and T2 =
(
T i

2

)
16i6I2

be two candidate topologies whose elements
are ordered such that

∀ 1 6 i1 < i2 6 Ij c(T i1
j ) 6 c(T i2

j ) (3.8)

(in other words, topologies T1 and T2 are ordered by ascending quality criterion, so as to compare worst
elements at first). We consider the lexicographical order , denoted by < and defined by

T1 < T2 ⇔ ∃ 1 6 i0 6 min(I1, I2), such that
{
∀ i < i0 c(T i

1) = c(T i
2)

and c(T i0
1 ) < c(T i0

2 )
(3.9)

This relationship order ensures that the worst element of the best topology is as good as possible.
Conversely, techniques based on cost functions, like [Bottasso 2004], can keep some degenerated or poor
quality elements.

3.2.1.3 Algorithm modifications

The overall strategy of algorithm 2.1 page 29 is still used. However, the aim has changed since we now
need to preserve the minimal volume (so as to work with valid meshes) and to maximize the topology T
(according to the previous relationship order). Again, we proceed by local optimizations.

Algorithm 3.1 so as to adopt a mesh (N , T ) to a metric field M :

while topology T has been modified do
for each node and each edge of the mesh do

– remove the local topology Tc around this node or this edge
– among all candidates Te whose volume is minimal

(these candidates are obtained by the star operator),
insert a maximal topology (according to the relationship order between topologies)

– transport the metric field M , if necessary
done

done
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Again, only the star operator (2.2) (defined page 25) is required. In fact, combinations of this opera-
tor are able to reproduce other operators used in [Tam et al. 2000, Pain et al. 2001, Remacle et al. 2002,
Bottasso 2004].

Since the boundary nodes are treated in the same way than the interior nodes (section 2.2.2.3 page 33),
the adaption of the boundary mesh is a faithful trace of the interior mesh adaption (unlike an hybrid
Delaunay / advancing front method, where a separate adaption is performed for the boundary).

Unfortunately, we do not get a perfect mesh after the algorithm 3.1 is performed for the first time. If
we iterate, by recomputing the metric field on the new mesh and by executing the algorithm 3.1 again,
then a conforming mesh to the metric field M is built. In other words, the loop denoted by II on figure 2
page 5 is run several times before the final adaption is achieved.

3.2.1.4 Metric update

Each time a new node C is introduced, the metric field needs to be updated. When C is the center
of S1, . . . , Sn, vertices of ∂Tc, we simply consider the averaged value

M(C) =
1
n

n∑
i=1

M(Si) (3.10)

and when C is the middle of an edge [S, S′], we take

M(C) =
M(S) + M(S′)

2
(3.11)

This interpolation choice may be mathematically arguable (appendix A.1.3.1 page 148), but it leads to
an efficient update of the field M . Surprisingly, the imprecision made by this interpolation cannot be
improved by better interpolations (see next section). In fact, the iterative process does not need the
better interpolation, but the most favorable interpolation for the convergence.

Besides, due to this update step, the topological mesh adaption could not work with a P 0 metric
field (in other words, a metric field defined on the elements), although it could be advantageous (in mesh
coarsening [Janka 2002], for example). A P 0 field update during the cut and paste process would be very
difficult and expensive, unlike the update of a node defined information, which is easier to implement.
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3.2.2 Validation

In this section, several analytical metric fields are given and we follow the non conformity coefficient
εT (defined in section 1.3.3 page 18) evolution during the iterative process of adaption by topological
optimization. The more εT is close to 0, the better the conformity between the mesh and the metric field
used in the adaption.

We use the P 1 interpolation of the metric field M described previously, but we also test other inter-
polations:

• a P 1 interpolation of the transformation field M1/2, by considering

M1/2(T ) =
1

d + 1

d∑
i=0

M1/2(Si) (3.12)

|T |M(T ) = |T | det(M1/2(T )) (3.13)

hM(T ) =

 2
d(d + 1)

∑
06i<j6d

‖M1/2(T )(Sj − Si)‖2

1/2

(3.14)

M1/2(C) =
1
n

n∑
i=1

M1/2(Si) or
M1/2(S) + M1/2(S′)

2
(3.15)

• a P 1 interpolation of the inverse transformation field M−1/2, by considering

M1/2(T ) =

(
1

d + 1

d∑
i=0

M−1/2(Si)

)−1

(3.16)

|T |M(T ) = |T | det(M1/2(T )) (3.17)

hM(T ) =

 2
d(d + 1)

∑
06i<j6d

‖M1/2(T )(Sj − Si)‖2

1/2

(3.18)

M−1/2(C) =
1
n

n∑
i=1

M−1/2(Si) or
M−1/2(S) + M−1/2(S′)

2
(3.19)

• a P 1 interpolation of the minimal mesh size h = max
λ,eigenvalueofM

λ−1/2, by considering

h(T ) =
1

d + 1

d∑
i=0

h(Si) (3.20)

|T |M(T ) = |T | (3.21)

hM(T ) =
1

h(T )

 2
d(d + 1)

∑
06i<j6d

‖Sj − Si‖2

1/2

(3.22)

h(C) =
1
n

n∑
i=1

h(Si) or
h(S) + h(S′)

2
(3.23)
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3.2.2.1 Anisotropic case in 2D

We start with the 2D anisotropic metric field defined on the simple rectangular domain [0, 7]× [0, 9],
by [George and Borouchaki 1997]. First iterations of the adaption process, with metric field M , are given
on figure 3.3. CPU times are less than 1 seconde. Those CPU times will be more significant in 3D.

(a) initial mesh (b) 94 nodes (c) 1144 nodes (d) 1342 nodes

(e) 1318 nodes (f) 1314 nodes

Figure 3.3: Iterative adaption process on a 2D anisotropic test case

Evolutions of the non conformity coefficient, for all configurations (M , M1/2, M−1/2 and h), are
plotted on figure 3.4. Obviously, with this anisotropic case, the use of an isotropic mesh size h do not
lead a good metric compliant mesh. Indeed, the curve obtain with h tends to a high asymptotical value
of εT . Conversely, the three other curves (for M , M1/2 et M−1/2) converge well to 0, in less than 8
iterations. It implies that the adaption has succeeded.

More precisely (figure 3.5), the three curves tends to quite similar asymptotical values. These asymp-
totical values are intrinsic thresholds of the adaption method. The lowest one is obtained with M1/2,
but a faster convergence is obtained with M .



44 CHAPTER 3. MESH ADAPTION DRIVEN BY A METRIC FIELD

0

20

40

60

80

100

120

140

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
iteration number

no
n 

co
nf

or
m

ity
 c

oe
ff

ic
ie

nt

metric M
transformation M^(1/2)
inverse transformation M^(-1/2)
mesh size h

Figure 3.4: Convergence history for the 2D anisotropic test case
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Figure 3.5: Enlargement of the convergence curves of figure 3.4
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3.2.2.2 Isotropic case in 2D

Before the 3D case, we propose to observe the behavior of the anisotropic adaption algorithm with
an isotropic metric field (in 2D). This is the same test case than previously, except that only the smallest
mesh size is considered [George and Borouchaki 1997]. First iterations of the adaption process, with
metric field M , are given on figure 3.6. Surprisingly, the obtained meshes do not show a good symmetry,

(a) initial mesh (b) 94 nodes (c) 918 nodes (d) 1867 nodes

(e) 2281 nodes (f) 2286 nodes

Figure 3.6: Iterative adaption process on a 2D isotropic test case

despite the symmetry of the problem.

This time, all convergence curves, including the mesh size field h, show a good adaption (figure 3.7).
Curves concerning M−1/2 and h are perfectly superimposed, which verifies the fact that formula (3.16 -
3.23) are equivalent, in the isotropic framework.

However, convergence with M−1/2 and h is less stable than convergence with M or M1/2 and the
asymptotical value is 10 times higher (figure 3.8). This implies that the treatment of isotropic cases has
become better, since the anisotropic strategy in implemented (which is not usual). Again, between M
and M1/2, the asymptotical value is lower with M1/2 but convergence is faster with M .
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3.2.2.3 Anisotropic case in 3D

2D test cases are interesting, but the most important validation concerns the behavior in 3D. Here, we
consider the test case defined by [Bottasso 2003, Bottasso 2004] on the parallelepiped [0, 0.1]×[0, 1]×[0, 1].
First iterations of the adaption process, with metric field M , are given on figure 3.9. CPU times are
obtained on a 220 Mflops workstation. When the mesh is close to the final one, the adaption process is
not expensive (between figure 3.9(e) and figure 3.9(f), it takes 1 minute and 42 seconds), but at the be-
ginning, many refining operations are needed (between figure 3.9(b) and figure 3.9(c), it takes 12 minutes).

Again, the mesh size field h fails (figure 3.10). Furthermore, the curves obtained with M1/2 and
M−1/2 show some erratic high values during the convergence process, which expresses the presence of at
least one bad element in the mesh.

In this case, the curve obtained with M is the only one that converges monotonically and with
the lowest asymptotical value (figure 3.11). Interpolation with M seems to be the best one for our
optimization process.
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(a) initial mesh (b) 1943 nodes in 73 s (c) 25066 nodes in 1301 s

(d) 23694 nodes in 352 s (e) 23599 nodes in 151 s (f) 23584 nodes in 102 s

Figure 3.9: Iterative adaption process on a 3D anisotropic test case
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3.3 Conclusion

The topological optimization strategy, introduced in the previous chapter, succeeds (empirically) in
the anisotropic adaption and we have quantified the convergence.

No improvement is obtained for this anisotropic adaption process by replacing the metric field M by
the transformation field M1/2 or by the inverse transformation field M−1/2. It would be more expensive,
slower and conformity would not be better. In other words, the optimization strategy is compatible with
the direct handling of a metric field M .

Furthermore, there is no need to replace the L2 averaged size (3.4) by a L1 averaged size (the latter
being more expensive). Indeed, we see on figure 3.12 that the convergence is better with the L2 averaged
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Figure 3.12: Comparison between different averages for the 2D anisotropic test case

size than the L1 one (the 2D anisotropic test case, where the metric field M interpolation has been used).

Thanks to this validation benchmark, the tuning of the anisotropic adaption by topological optimiza-
tion is achieved. Fortunately, less expensive formula are also the best ones.

Compared to other methods, may it be an hybrid Delaunay / advancing front technique or other
optimization techniques, the topological optimization keeps the same advantages than in the previous
chapter, namely: dimension independence, robustness and simple implementation (efficient formula and
simple topological operations).

The building of a good metric field is now required. This is the aim of the following parts.
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51





53

Introduction

Metric fields used in anisotropic adaption are usually computed by an a posteriori error estima-
tor [Tam et al. 2000, Pain et al. 2001, Remacle et al. 2002, Alauzet et al. 2003, Dobrzynski et al. 2004].
This metric field can be the absolute value of a Hessian matrix (computed from a scalar field), eigenvalues
being truncated by a minimal and a maximal mesh sizes.

However, this error estimation is not available when simulation fails due to the initial mesh. Reasons
for such a failure may come from: the isotropy of the initial mesh, leading to an excessive memory con-
sumption within an implicit solver or the excessive coarsening of the initial mesh, leading to a solution,
so poor, that the Hessian matrix is null.

That is the reason why, in our opinion, efforts must be spent on building a metric field before the
solver is run. This part is devoted to the building of an a priori metric field that leads to a suitable mesh
for Rem3D solvers. This a priori metric field uses only geometrical information about the computational
domain.

For that purpose, we define in chapter 4 (page 55) a so-called natural metric that detects the local
anisotropy of a geometry. A computational way for this natural metric is proposed, relying on a semi-
definite programming algorithm. The natural metric is then applied to introduce several element layers
through the thickness of industrial parts (figure 3.13), which can be thin and curved.

Figure 3.13: Complex geometry that could not be decomposed in simple patterns (courtesy of Schneider
Electric)

Unfortunately, the natural metric is not always satisfying. For some configurations, we need the
developments of chapter 5 (page 83), where two distinct ways are explored, so as to improve the natural
metric with the use of a simple, but relevant, simulation result.
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Chapter 4

Natural metric generated a priori

The first problem that we address with a metric field computation is the need of a mesh with several
element layers everywhere through the thickness. In the Rem3D context, this need is due to the fact
that a coarse mesh of the mould cavity is able to interpolate correctly a (linear) newtonian flow, but not
a (non linear) viscoplastic flow. Another reason is the strong temperature gradient between the injected
thermoplastic (at about 200◦C) and the surrounding mould (at about 50◦C). The thermal solver needs
a fine mesh trough the thickness, otherwise cooling could be overestimated and the thermoplastic could
even obstruct.

In order to get a mesh with several element layers through the thickness, several techniques without
metric could be employed:

• the mesh could be extruded from its median surface [Knockaert 2001], but the median surface is
not easy to build and local thickness size must be given everywhere

• the mesh could be extruded from its boundary [Garimella and Shephard 1998], but curved geome-
tries imply a lot of connecting zone treatments

• an initial coarse mesh could be systematically refined in a direction that is orthogonal to the
boundary [Peraire and Morgan 1997] or the thickness direction, which has to be computed, like in
[Garimella 1998] (figure 4.1).

Figure 4.1: Thickness refining (from [Garimella 1998])

All this techniques can be employed with moderately complex geometries. Their main drawback is the
impossibility to coarsen the mesh in the directions that are orthogonal to the thickness direction. Mesh
sizes in these directions are decided by the initial mesh, which may lead to an expensive triangulation

55
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with curved geometries (figure 4.4).

On the contrary, a metric based method is more flexible, which enables coarsening and complex
geometry treatment. The main difficulty is to build the good metric field. When the computational
domain can be divided in simple plate, cylindrical and spherical zones (figure 4.2) or divided in zones

Figure 4.2: A geometry that can be divided in plates and cylinders (courtesy of Plastic Omnium)

where the anisotropy is known [Gobeau 1996], we can easily build an analytical metric field (see sec-
tion A.1.4 page 151). Unfortunately, this manual division of the computational domain in simple zones
is tedious. For instance, so as to obtain the mesh of figure 4.3, three days have been spent on the an-

(a) suitable mesh for Rem3D (48 646 nodes) (b) enlargement

Figure 4.3: Mesh obtained with an analytical metric field

alytical metric computation. The most difficult step concerns the rotation computation of inclined plates.
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Such a manual division becomes inconceivable for industrial complex geometries (figure 3.13). Fur-
thermore, an analytical metric is quasi impossible to exhibit when curvature changes in a complex way
(figure 4.4).

Figure 4.4: Curved industrial geometry (courtesy of Atofina)

For these reasons, we focus our attention on the automatic building of a natural metric that detects
the local anisotropy of the computational domain. Three steps are required:

• hull growing according to successive neighborhoods (section 4.1), until the appropriate order is
attained (section 4.3)

• elliptic interpolation of that hulls, so as to obtain a metric (section 4.2)

• and refining this metric, in order to introduce several element layers through the thickness (sec-
tion 4.4).
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4.1 Local anisotropy

With the introduction of a relationship order between metrics, the local anisotropy of a geometry can
be defined. However, a numerical computation of the natural metric cannot be directly derived from such
a definition. That is the reason why we propose a practical method to approximate the local anisotropy
from a given mesh of the geometry (even a very coarse mesh).

4.1.1 Definition

Let us introduce a relationship order between metrics.

Definition 4.1 let M1 and M2 be two metrics, whose eigenvalues λj
1 6 . . . 6 λj

d are sorted (in ascending
order). We consider the lexicographical order between metrics, denoted by < and defined by

M1 < M2 ⇔ ∃ 1 6 i0 6 d such that
{
∀ 1 6 i < i0 λ1

i = λ2
i

and λ1
i0

> λ2
i0

(4.1)

The unit ball of a metric M , centered on x ∈ Rd, is the elliptical conic

E(M,x) = {y ∈ Rd such that ‖y − x‖M 6 1} (4.2)

The first idea, for the natural metric definition on x ∈ Ω, is to consider the greatest unit ball containing
x and entirely included in Ω. Unfortunately, this metric would degenerates when x is located at a corner
of the geometry.

The second idea is to consider the greatest metric centered on x and entirely included in Ω. Unfortu-
nately, this metric would again degenerates when x is close to the boundary. However, this definition is
fine when x belongs to the median surface, which is denoted by ∂ 1

2
Ω. That is the reason why we employ

the following definition, with the notations of figure 4.5.

Figure 4.5: Notations for the natural metric definition

Definition 4.2 the natural metric of Ω, on x ∈ Ω, is defined by:

• the greatest metric centered on x and entirely included in Ω, when x ∈ ∂ 1
2
Ω

• the natural metric of the closest point x0 ∈ ∂ 1
2
Ω from x, otherwise

• the averaged value, if x0 is not unique.

Implementing that definition would involve too many operations. An approximation is then intro-
duced in the following section.
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4.1.2 Neighborhood growing

Anisotropic adaption, as described in the previous chapter, uses a continuous P 1 metric field. Thus,
the natural metric has to be defined on each node S of Ω’s mesh. In practice, the local anisotropy of Ω
is detected by aggregating mesh elements around each node S. Aggregation is performed by successive
neighborhoods.

Definition 4.3 the k-th order neighborhood Nk(S) of a node S (with k ∈ N) is recursively defined by

N0(S) = {S} (4.3)

Nk(S) = V(Nk−1(S)) \
⋃

06l<k

Nl(S) ∪
⋃

06l<k

(
Nl(S) ∩ ∂Ω

)
(4.4)

where V(S) is the set of neighbors of a node set, denoted by S.

In this definition, the k-th order neighborhood of S contains not only the neighbors of the (k− 1)-th
order neighborhood of S that are not already neighbors of S (with order < k), but also all intersections
between previous neighborhoods of S and the boundary (boxed part in (4.4)). Those intersections contain
the most important information about the geometry.

The k-th order neighborhood of S separates the topology T (including its virtual elements connected
to node 0, see page 33) into two subtopologies: the subtopology whose elements have all their vertex
in the k first neighborhoods

⋃
06l6k

Nl(S) and the subtopology T ext
k (S) that contains all other elements

(including the virtual elements connected to node 0). The subtopology T ext
k (S) is very interesting since

its topological boundary can be seen as the k-th order hull around S (figure 4.6).

Figure 4.6: Three successive neighborhoods around a node S.

Definition 4.4 the (geometrical) k-th order hull around a node S is the surface defined by

Ck(S) =
⋃

F∈∂T ext
k (S)

F (4.5)

Some of the k-th order neighbors of S may not be vertices of the k-th order hull. The previous
definition eliminates deliberately useless neighbors. This leads to the introduction of the filtered k-th
order neighborhood of S, defined by

Ñk(S) = Nk(S) ∩ Ck(S) (4.6)

that is to say, the k-th order neighbors of S that are also vertices of ∂T ext
k (S).

Then, candidates for the natural metric in S are the elliptic interpolations of the successive hulls
(Ck(S))k∈N\{0}. So as to compute such an elliptic interpolation, we use the faces of ∂T ext

k (S) and the
nodes of Ñk(S).
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4.2 Discrete elliptic interpolation

For each hull vertex S′ ∈ Ñk(S), we denote by ∂T ext
k (S, S′) the set of faces from ∂T ext

k (S), whose S′

is a vertex. This allows the introduction of Ck(S), the weighted center of the k-th order hull around S

Ck(S) =
∑

S′∈Ñk(S)

αS′S
′ (4.7)

with αS′ =

∑
F∈∂T ext

k (S,S′)

|F |

d
∑

F∈∂T ext
k (S)

|F |
(4.8)

In this section, the following problem is addressed: to find the metric whose unit ball centered on Ck(S)
interpolates at best the hull Ck(S). In 2D, this is a classical interpolation problem [Haĺı̌r and Flusser 1998].
But, as far as we know, 3D solutions (a fortiori dimension-independent solutions) proposed here, are new.

4.2.1 Semi-definite programming problem

From a least-square point of view, this interpolation problem can be reformulated as: find the mini-
mum of the following function

f(M) =
∑

S′∈Ñk(S)

αS′
(
‖S′ − Ck(S)‖2

M − 1
)2 (4.9)

Hereafter, several properties of that function are investigated.

Proposition 4.1 the gradient and the Hessian of f(M) are

∇f(M) = 2
∑

S′∈Ñk(S)

αS′
(
‖S′ − Ck(S)‖2

M − 1
)
(S′ − Ck(S))⊗ (S′ − Ck(S)) (4.10)

H(f) = 2
∑

S′∈Ñk(S)

αS′(S′ − Ck(S))⊗ (S′ − Ck(S))⊗ (S′ − Ck(S))⊗ (S′ − Ck(S)) (4.11)

This formulae are used in the minimum M computation.

Proof : since ‖x‖2
M =

∑
16i,j6d

xiMijxj , f(M) is quadratic, so, f has a C∞ regularity and

∇f(M) =
∑

S′∈Ñk(S)

αS′∇
(
‖S′ − Ck(S)‖2

M − 1
)2 (4.12)

= 2
∑

S′∈Ñk(S)

αS′
((
‖S′ − Ck(S)‖2

M − 1
)
∇
(
‖S′ − Ck(S)‖2

M − 1
))

(4.13)

= 2
∑

S′∈Ñk(S)

αS′
(
‖S′ − Ck(S)‖2

M − 1
)
(S′ − Ck(S))⊗ (S′ − Ck(S)) (4.14)

because ∇‖x‖2
M = x⊗ x. Indeed, we have

∂‖x‖2
M

∂Mi0j0

=

∂

 ∑
16i,j6d

xiMijxj


∂Mi0j0

(4.15)

= xi0xj0 (4.16)
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Besides,

H(f) = ∇ (∇f(M)) (4.17)

= 2
∑

S′∈Ñk(S)

αS′∇
(
‖S′ − Ck(S)‖2

M − 1
)
(S′ − Ck(S))⊗ (S′ − Ck(S)) (4.18)

= 2
∑

S′∈Ñk(S)

αS′(S′ − Ck(S))⊗ (S′ − Ck(S))⊗ (S′ − Ck(S))⊗ (S′ − Ck(S)) (4.19)

which ends the proof. �

We denote by
−→
M ∈ Rd2

the column vector, whose coefficients are those of M (row by row). We also
use −−−→x⊗ x and we introduce x⊗ x⊗ x⊗ x = −−−→

x⊗ x ⊗ −−−→
x⊗ x. Then, the Hessian H(f) can be seen a the

matrix H(f) with d2 rows and d2 columns.

Proposition 4.2 f is convex and a local extremum of f is a global minimum of f .

In other words, it legitimates the minimization of f .

Proof : let us consider
−→
h ∈ Rd2

, we have

H(f)
−→
h .
−→
h (4.20)

= 2
∑

S′∈Ñk(S)

αS′
−→
h >(S′ − Ck(S))⊗ (S′ − Ck(S))⊗ (S′ − Ck(S))⊗ (S′ − Ck(S))

−→
h (4.21)

= 2
∑

S′∈Ñk(S)

αS′

(
(S′ − Ck(S))⊗ (S′ − Ck(S))

−→
h
)> (

(S′ − Ck(S))⊗ (S′ − Ck(S))
−→
h
)

(4.22)

= 2
∑

S′∈Ñk(S)

αS′

(
(S′ − Ck(S))⊗ (S′ − Ck(S))

−→
h
)2

(4.23)

> 0 (4.24)

So, f is convex. Furthermore, since the set of all real matrices with d columns and d rows is also a convex,
each local extremum of f is a global minimum of f . �

Since f is quadratic, all minima M of f satisfy the following linear equation system

H(f)
−→
M = −

−−−−→
∇f(0) (4.25)

However, f can admits several minima, especially when the population Ñk(S) is not rich enough. So
as to make the minimum unique, the diagonal part of H(f) could be penalized . Unfortunately, such
a Tickhonov regularization [Jonas and Louis 2001] selects a particular solution, which may not be the
most interesting.

That is the reason why we prefer to enrich the set Ñk(S), by introducing the centers of faces ∂T ext
k (S)

or even better, by introducing the middle of each edge between two neighbors from Ñk(S). Empirically,
this leads to a strictly convex function f .

We still have to study the properties of the minimum admitted by f . For that purpose, we consider
the decomposition

−−−−−−−−−−−−−−−−−−−−−→
(S′ − Ck(S))⊗ (S′ − Ck(S)) =

 U
D
L

 (4.26)
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in upper triangular U , diagonal D and lower triangular L parts. The same decomposition is performed
on

−→
M =

 U(M)
D(M)
L(M)

 (4.27)

and
−−−−→
∇f(0) =

 U(∇f(0))
D(∇f(0))
L(∇f(0))

 (4.28)

Proposition 4.3 if f admits a unique minimum M , then M is a symmetrical matrix whose coefficients
are solution of the reduced system

2
∑

S′∈Ñk(S)

αS′

(
2U ⊗ U U ⊗D
2D ⊗ U D ⊗D

) (
U(M)
D(M)

)
= −

(
U(∇f(0))
D(∇f(0))

)
(4.29)

In other words, there is not d2 equations to be solved, so as to find M , but only
d(d + 1)

2
.

Proof : firstly, we remark that

H(f) = 2
∑

S′∈Ñk(S)

αS′

 U ⊗ U U ⊗D U ⊗ L
D ⊗ U D ⊗D D ⊗ L
L⊗ U L⊗D L⊗ L

 (4.30)

= 2
∑

S′∈Ñk(S)

αS′

 U ⊗ U U ⊗D U ⊗ U
D ⊗ U D ⊗D D ⊗ U
U ⊗ U U ⊗D U ⊗ U

 (4.31)

because (S′ − Ck(S))⊗ (S′ − Ck(S)) is symmetrical, so, L = U .

Secondly, we denote by P the transposition matrix, namely, the matrix such that, for all matrix M
with d rows and d columns, we have

P
−→
M =

−−→
M> (4.32)

in other words, P

 U
D
L

 =

 L
D
U

 (4.33)

Then, we have H(f) P = H(f), since the first and third columns of

 U ⊗ U U ⊗D U ⊗ U
D ⊗ U D ⊗D D ⊗ U
U ⊗ U U ⊗D U ⊗ U

 are

identical. Thus, it comes

−
−−−−→
∇f(0) = H(f)

−→
M = H(f) P

−→
M = H(f)

−−→
M> (4.34)

Since M is unique, we have M> = M , so, M is symmetrical.

Thirdly, the system (4.25) can be rewritten in the following form

2
∑

S′∈Ñk(S)

αS′

 U ⊗ U U ⊗D U ⊗ U
D ⊗ U D ⊗D D ⊗ U
U ⊗ U U ⊗D U ⊗ U

  U(M)
D(M)
U(M)

 = −

 U(∇f(0))
D(∇f(0))
U(∇f(0))

 (4.35)

because M and ∇f(0) are symmetrical. In this new system (4.35), the third row is identical to the first
one and can thus be eliminated. Then, by grouping U(M) coefficients, we get the reduced system (4.29).�
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Thus, the solution M is always symmetrical. However, M may not be definite positive and, thus,
may not be a metric. It may happen when, for example, the nodes of Ñk(S) are aligned on a hyper-
bolae in 2D (in this case M is the matrix corresponding to this hyperbolae and has a negative eigenvalue).

So as to obtain a metric, the function f should be minimized under the following constraint: M is
definite positive. Unfortunately, the set of definite positive symmetrical matrices is not a closed set (the
series of positive definite matrices

(
1
nI
)
n∈N\{0} tends to the null matrix, which is not definite).

Thus, a minimal eigenvalue h−2
max should be chosen and minimization should be performed under the

constraint: each eigenvalue of M is lower or equal h−2
max, so as to make this problem well-posed. The

choice of hmax corresponds to the choice of a maximal radius for the unit ball of M , which is reasonable.

However, this is a semi-definite programming problem and the constraint is difficult to treat by usual
optimization techniques. This constraint could be ignored and solution without constraint could be
projected on the constrained space. This is the case, when a metric is built from a Hessian matrix
[Tam et al. 2000, Leservoisier et al. 2001, Pain et al. 2001, Remacle et al. 2002, Alauzet et al. 2003].

In the following sections we propose two original methods, in order to solve the constrained problem.
The first method relies on a tensorial decomposition of a size distribution function, around the center
Ck(S) (section 4.2.2). The second method uses a linear combination of metrics associated to the elements
generated by the star operator, from center Ck(S) to the hull ∂T ext

k (S) (section 4.2.3).

4.2.2 Tensor decomposition

The first way to find a minimum M of f that satisfies the definite positive constraint, is to search
M−1 among all linear combinations of tensors ((S′ − Ck(S))⊗ (S′ − Ck(S)))S′∈Ñk(S).

For that purpose, we consider a second order tensorial approximation of the length distribution
function, from the center Ck(S) to the hull Ck(S). We denote by Sd-1 =

{
x ∈ Rd, ‖x‖2 = 1

}
, the unit

sphere of Rd.

Definition 4.5 the length distribution function around the center Ck(S) is defined by the following
function defined on Sd-1

h(x) = min
λ ∈ R

such that
Ck(S) + λx ∈ Ck(S)

λ2 (4.36)

Thus, h(x) is the squared distance between Ck(S) and the closest point of Ck(S), in direction x
(figure 4.7).

Figure 4.7: Notations for the length distribution function
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Proposition 4.4 the h function can be approximated by

h(x) ' 1
2d−1 π

∫
Sd-1

h(p) dp + x>
(

d

d− 1
1

2d−1 π

∫
Sd-1

h(p)
(

p⊗ p− 1
d

I

)
dp

)
x (4.37)

In other words, h can be represented by an averaged value and a traceless second order tensor.

Proof : we denote by H2i(x) the 2i-th order tensor, defined on the unit sphere by

H2i(p) = Traceless (p⊗ . . . (2i times) . . .⊗ p) (4.38)

where Traceless is the operator that removes the trace part of a 2i-th order tensor. For instance, when
i = 0 and i = 1 , we have

H0(p) = 1 (4.39)

H2(p) = p⊗ p− 1
d

I (4.40)

However, when i = 2, it is more complicated [Onat 1982].

From [Onat and Leckie 1988], the series (H2i)i∈N is an orthogonal series of L2

(
Sd-1). By making the

assumption that h ∈ L2

(
Sd-1), the Fourier series of h on the basis (H2i)i∈N is

h(x) =
∑
i∈N

‖H2i‖−1

L2(Sd-1)

(∫
Sd-1

h(p)H2i(p) dp

)
: H2i(x) (4.41)

where the operator : denotes the complete contraction between two tensors of the same order. Since
h(−x) = h(x), odd terms are null.

Rewriting the first terms, it gives

h(x) =
1

2d−1 π

(∫
Sd-1

h(p) dp +
d

d− 1

(∫
Sd-1

h(p)
(

p⊗ p− 1
d

I

)
dp

)
:
(

x⊗ x− 1
d

I

))
(4.42)

+ . . .

because first norms are

‖H0‖L2(Sd-1) =
∫

Sd-1
dp = 2d−1 π (4.43)

‖H2‖L2(Sd-1) =
∫

Sd-1
H2(p) : H2(p) dp (4.44)

=
∫

Sd-1

(
1− 1

d

)
dp =

d− 1
d

2d−1 π (4.45)

Formula (4.42) can be simplified since(∫
Sd-1

h(p)
(

p⊗ p− 1
d

I

)
dp

)
: I = Trace

(∫
Sd-1

h(p)
(

p⊗ p− 1
d

I

)
dp

)
(4.46)

=
∫

Sd-1
h(p) Trace

(
p⊗ p− 1

d
I

)
dp = 0 (4.47)

and it comes

h(x) =
1

2d−1 π

(∫
Sd-1

h(p) dp +
d

d− 1

(∫
Sd-1

h(p)
(

p⊗ p− 1
d

I

)
dp

)
: (x⊗ x)

)
+ . . . (4.48)

For each matrix A with d rows and d columns, we have x>Ax = A : (x⊗ x), so, we obtain (4.37). �
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Following the preceding result, we employ a second order tensor (its trace corresponds to the averaged
value), so as to approximate the function h

h(x) ' x>

µ

(∫
C̃k(S)

(y − Ck(S))⊗ (y − Ck(S)) dy

)−1
x (4.49)

where µ is a scalar and C̃k(S) is the image of Sd-1 by h.

Thus, the following approximation is proposed to interpolate the hull Ck(S), with a metric unit ball

M2 = µkM (4.50)

with M =

 ∑
S′∈Ñk(S)

αS′(S′ − Ck(S))⊗ (S′ − Ck(S))

−1

(4.51)

and µk =

∑
S′∈Ñk(S)

αS′‖S′ − Ck(S)‖2
M∑

S′∈Ñk(S)

αS′‖S′ − Ck(S)‖4
M

(4.52)

It results from a P 1 quadrature of the integral (4.49), where αS′ is defined by (4.8). This quadrature
could be improved since the function y 7→ (y − Ck(S))⊗ (y − Ck(S)) is, in fact, P 2 on Ck(S).

We can see (4.51) as a second order tensorial approximation of the vector S′ − Ck(S) collection
(figure 4.8), whose orientations and lengths are taken into account. This idea has been inspired by
[Advani and Tucker 1987].

Figure 4.8: Vectors S′ − C3(S)

According to the following result, the scalar µk given by (4.52) is the best multiplicative factor.

Proposition 4.5 µk is the minimum of the scalar function

f(µ) =
∑

S′∈Ñk(S)

αS′
(
‖S′ − Ck(S)‖2

µM − 1
)2 (4.53)

This is the same function of the preceding section, except that only one degree of freedom remains.

Proof : we have

f(µ) =
∑

S′∈Ñk(S)

αS′
(
‖S′ − Ck(S)‖2

µM − 1
)2 (4.54)

=
∑

S′∈Ñk(S)

αS′
(
µ‖S′ − Ck(S)‖2

M − 1
)2 (4.55)

=
∑

S′∈Ñk(S)

αS′
(
µ2‖S′ − Ck(S)‖4

M − 2µ‖S′ − Ck(S)‖2
M − 1

)
(4.56)
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so, f is quadratic and

df

dµ
(µ) =

∑
S′∈Ñk(S)

αS′
d
dµ

(
µ2‖S′ − Ck(S)‖4

M − 2µ‖S′ − Ck(S)‖2
M − 1

)
(4.57)

=
∑

S′∈Ñk(S)

αS′
(
2µ‖S′ − Ck(S)‖4

M − 2‖S′ − Ck(S)‖2
M

)
(4.58)

since there exists S′ 6= Ck(S) ∈ Ñk(S), it comes

df

dµ
(µ) = 0 ⇔ µ =

∑
S′∈Ñk(S)

αS′‖S′ − Ck(S)‖2
M∑

S′∈Ñk(S)

αS′‖S′ − Ck(S)‖4
M

(4.59)

thus, the unique minimum of f(µ) is given by (4.52). �

4.2.3 Elementary metric combination

An other way to compute the best interpolating metric has been given by [Janka 2002]. Firstly, the
star operator (defined by (2.2) page 25) is used from the center Ck(S) to the hull ∂T ext

k (S) (figure 4.9)

Tk(S) = T ∗ (Ck(S), ∂T ext
k (S)

)
(4.60)

Figure 4.9: Star operating with the hull of order k = 3

Then, the matrix M−1/2 is searched among all linear combinations of inverse transformations M
−1/2
T ,

where the elements T result from the star operating Tk(S) (figure 4.9). According to [Janka 2002], if we
consider

M3 =

 1
card(Tk(S))

∑
T∈Tk(S)

M
− 1

2
T

−2

(4.61)

then eigenvectors of M3 are relevant but their eigenvalues should be corrected isotropically.

We denote by MT = RT DT R>
T , the diagonalization of MT and by M3 = R D R>, those of (4.61),

then better results are obtained when considering

M4 = R

 1
card(Tk(S))

∑
T∈Tk(S)

D
− 1

2
T

−2

R (4.62)
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4.2.4 Comparisons

Here we compare M2 (obtained by orientation tensors), M3 and M4 (obtained by elementary metric
combination), with a metric M1, solution of the unconstrained optimization (according to the reduced
system (4.29) page 62). The metric computation is performed on a mesh containing nearly 100 000 nodes,
whose geometry represents all difficulties encountered in injection molding of thin parts (figure 4.10).

Figure 4.10: Test case mesh containing 96 033 nodes (courtesy of Schneider Electric)

The CPU time in table 4.1 takes into account the computation of the appropriate order (next section).
It also takes into account the diagonalization used to divide mesh sizes (section 4.4).

interpolation CPU time en seconds failure averaged inter-
type on a 220 Mflops workstation number polation error
M1 1330 2710 0.86052
M2 1668 0 0.80979
M3 4048 12 1.82066
M4 4526 12 0.87447

Table 4.1: Comparisons between four elliptic interpolation methods

With our implementation, the metric M2 is not only the less expensive (except M1, but M1 fails 2710
times in elliptic matrix resulting), but also the most robust and accurate. That is the reason why we use
it in priority, in the remainder. In practice, when M2 fails, M4 is tried and, if necessary, M1 also (with a
projection on the constrained space).
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4.3 Appropriate order

In fact, the elliptic interpolation is not computed for each neighborhood order k, but only for k be-
tween kmin and kmax.

Since the local geometry thickness has to be detected, the minimal order kmin > 1 is the first order,
such that ∀ k > kmin the hull Ck(S) locally obstructs the thickness. Computing kmin is quite technical
and described in appendix B.1.1 page 167.

Then, the neighborhood order is chosen as great as possible: while a not-so-bad elliptic interpolation
of the hull Ck(S) is reachable, the neighborhood growing continues.

4.3.1 Interpolation error

The neighborhood growing stops at order kmax, defined as the first order k = kmax, such that the
elliptic interpolation error is too high, according to the following criterion

max
S′∈Ñk(S)

∣∣∣‖S′ − Ck(S)‖2
M(S,k) − 1

∣∣∣ > 0.76 (4.63)

where M(S, k) is the natural metric computed on node S, at order k.

In other words, the greatest order searching is finished when the hull becomes really non elliptic. In
practice, 76% is an empirical threshold that discriminates well the elliptic or non elliptic shape of a hull.

For the determination of the 76% threshold, a unit square is considered in 2D (figure 4.11(a)), while
a unit cube is considered in 3D (figure 4.11(b)) (with an additional node at the center). Since an ellipse

(a) (b)

Figure 4.11: 2D and 3D meshes for determining a lower bound of the elliptic interpolation error threshold

does not interpolate perfectly a square and an ellipsoid does not interpolate perfectly a cube, the inter-
polation error in these cases in not zero. In fact, with the meshes of figure 4.11, this error is 0.757255 in
2D and 0.615385 in 3D. In other words, so as to accept the elliptic interpolation of those simple objects,
the threshold value has to be greater than 0.757256.
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Furthermore, for the T-shaped configurations of figures 4.12(a) and 4.12(b), (an additional node lies

(a) (b)

Figure 4.12: 2D and 3D meshes for determining an upper bound of the elliptic interpolation error
threshold

inside the 3D geometry, at the T center), the elliptic interpolation errors at the center node are given on
table 4.2. In these cases, we want a hull growing stopped at k = 1, since a T-shaped geometry is really

order error in 2D error in 3D
k = 1 0.000000 0.000000
k = 2 0.850210 0.761029
k = 3 0.964311 0.984728

Table 4.2: Elliptic interpolation error at different neighborhood orders

non elliptic. From 3D results at k = 1, it comes that the threshold must be lower than 0.761029. A value
of 76% for the elliptic interpolation error threshold satisfies the lower and the upper bounds.

This empirical value works well in most situations, but pathological cases may be exhibited, where a
threshold value of 76% does not fit. Further investigations should be performed, so as to distinguish the
admissible noise of the hull Ck(S) around its elliptic interpolation and the loss of ellipticity of the local
geometry, around the node S. It could lead to a threshold value that depends on the spatial dimension
d and on the order k.
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4.3.2 Final algorithm

Thus, the appropriate order for the natural metric is K = kmax (except when kmin > kmax, in this
case, K = kmin).

Finally, the computed natural metric is

Mnatural(S) = µKL−1
K (4.64)

where LK =
∑

S′∈Ñk(S)

αS′(S′ − Ck(S))⊗ (S′ − Ck(S)) (4.65)

and µK =

∑
S′∈ÑK(S)

αS′‖S′ − CK(S)‖2
L−1

K∑
S′∈ÑK(S)

αS′‖S′ − CK(S)‖4
L−1

K

(4.66)

According to the previous section (and the following section), the full algorithm to compute the
natural metric field Mnatural (P 1) is as follows.

Algorithm 4.1 after preliminary works on the mesh, dedicated to the neighborhood computation (an-
nexe A.3.2 page 161), the applied procedure is:

for each node S do
for k from kmin to kmax do

– determinate the k-th order neighborhood of S
– interpolate the hull Ck(S)
– compute the elliptic interpolation error, so as to update kmax

done
– diagonalize the obtained metric
– divide selectively the mesh sizes in the thickness direction

fait

Algorithmic complexity can hardly be evaluated, since kmax strongly depends on the local geometry
and its current mesh. For instance, for a cube mesh with 100 000 nodes, kmax is much greater than for
another mesh with 100 000 nodes, involving thin zones. The former situation, where each node sees all
other nodes, is particularly expensive for the natural metric computation.

Furthermore, with the same geometry, but for different numbers N of nodes, the algorithm 4.1 is not
linear, since kmax depends on N . In the worst case (consisting in meshes obtained by successive isotropic
refining), kmax depends linearly on N . In the best case (consisting in meshes obtained by successive
refining in only one direction), kmax depends linearly on N

1
d .

These observations about kmax are also true for the number of faces involved in the hull Ck(S), which
is also the cardinal of ∂T ext

k (S). At worst, the algorithm complexity is proportional to N3 and, at best,
proportional to N1+ 2

d .

However, kmin may have the same order than kmax, which reduces the number of operations. Still,
the order range kmax − kmin remains unknown a priori, so, a numerical study should be run to compute
the algorithm complexity.

Computing the natural metric only at very interior nodes and transporting it to the rest of the mesh
could save numerous operations. However, the local anisotropy detection could be degraded.
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4.4 Several element layers through the thickness

At this stage, the local anisotropy of the geometry is known, thanks to the natural metric. In
particular, the thickness direction and the thickness size are embedded in the natural metric (without
any skeleton technique, employed for instance by [Tchon et al. 2003]). This thickness size has to be
divided, in order to introduce several element layers through the thickness, without introducing too
many nodes in other directions.

4.4.1 Selective division

We denote by h−2
1 > . . . > h−2

d , the eigenvalues of Mnatural(S) (in descending order) and we consider
the rotation R, such that

Mnatural(S) = R


1
h2

1

0

. . .

0
1
h2

d

R> (4.67)

So as to obtain n element layers through the thickness (where n is an end user value), one mesh size
has to be divided by n, the one corresponding to the thickness, namely h1. However, when the geometry
shows a local isotropy, that is, when Mnatural(S) has almost the same sizes in all directions, h1 is not the
only one to be divided, but also h2, . . . , hd (in order to generate isotropic elements).

In practice, the sizes h1, . . . , hp to be divided are those who lies between h1 and (1 + αh)h1 where
αh > 0 is a security factor. Empirically, we take αh = 1, which implies that a metric is anisotropic when
its sizes differ with a factor greater than 2. Then, the sizes h1, . . . , hp are divided by n, while hp+1, . . . , hd

remain unchanged. Finally, the following selectively divided natural metric is obtained

Mn
natural(S) = R



n2

h2
1

0

. . .
n2

h2
p

1
h2

p+1
. . .

0
1
h2

d


R> (4.68)

4.4.2 Iteration process

Let us consider the part of figure 4.13(a) (which is a biomedical application, only one half is modelled,
for symmetrical reasons). This part is a test case for Rem3D software validation [Silva and Coupez 2002].

The first mesh generated by topological optimization, driven by a natural metric with n = 4 element
layers required through the thickness, does not entirely respects this requirement (figure 4.13(b)). So
as to obtain a suitable mesh (figure 4.13(e)), the process has to be iterated. It means that the natural
metric is computed again on the new mesh and that the topological optimization is performed again to
achieved another adaption to this new metric.

We observe that the topological optimization also concerns the mesh boundary, especially on the
symmetry plane. The boundary mesh is not optimized separately, but reflects the trace of the interior
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(a) 3 045 nodes (b) 19 085 nodes (c) 9 825 nodes

(d) 8 895 nodes (e) 7 339 nnodes (f) sectional view of the preced-
ing mesh

Figure 4.13: Initial mesh (a) and first iterations (courtesy of Sophysa), with a sectional view (f) of step
(e)

natural metric. Unfortunately, this trace is sometimes delusive. For instance, the interior mesh of fig-
ure 4.13(f) is more refined than we may think, when we only look at its boundary (figure 4.13(e)).

Two indicators can be used to quantify the mesh evolution during the iterative process: the number
of nodes and the averaged number of element layers through the thickness (computation of the latter
being described in appendix B.1.2 page 168). These indicators are plotted on figure 4.14, for the first 16
iterations (the geometry of figure 4.13 being considered). These curves lead to several remarks:

• iteration 0 is the initial mesh, so, the peak is attained at the first adapted mesh (figure 4.13(b));
this peak is always observed (with all geometries), its presence must then be taken into account,
especially when memory is allocated for the adaption process

• the averaged number of layers converges, but to an asymptotical value lower that the requirement
(3 instead of 4); this is a usual phenomenon: the partially divided natural metric tends to coarsen
the mesh too much, when too many iterations are performed (we recommend about 4 iterations
only)
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Figure 4.14: Convergence history of the iterative process introducing several element layers through the
thickness

• the number of nodes hardly converges, which expresses a lack of local stability; thus, a full stabi-
lization should not be expected for the process.

The preceding geometry is quite massive, but industrial plastic parts are generally thin and curved, as
the one of figure 4.15. This configuration is not manageable manually, so, this is an important challenge
for an automatic tool.

So as to correctly interpolate the curvature, the boundary mesh is particularly fine. The boundary
mesh size is even lower than the thickness size, which leads to an anisotropic initial mesh (figure 4.15(a)),
but its anisotropy is opposed to the natural one. For that reason, the first iteration gives a merely
isotropic mesh (figure 4.15(b)), which emphasizes the peak about the number of nodes. Fortunately,
after 3 or 4 iterations, we get a suitable mesh, with curved element layers (figures 4.15(d) and 4.15(e)).
In order to show the good quality of the natural mesh inside the domain, a sectional view of the final
mesh is displayed (figure 4.15(f)).

Memory consumption of the algorithm is linear with the number of nodes. However, the peak evoked
previously may block the iterative process, when an intermediate mesh needs more than available memory.
In order to reduce this peak, we may not ask for n layers at first iterations, but rather 2, 3 and progressively
n layers.
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(a) 6 100 nodes

(b) 50 504 nodes

(c) 17 453 nodes

(d) 7 445 nodes

(e) 4 930 nodes

(f) sectional view of the preceding mesh

Figure 4.15: Initial mesh (a) and first iterations (academic geometry)
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4.4.3 Multiple thickness

In 3D, a geometry can have not only one thickness size but two different thickness sizes (in other
words, a thickness and a width). For instance, we consider the spiral mold of figure 4.16: its thickness

Figure 4.16: Spiral mold (courtesy of Atofina)

is 2 mm and its width is 20 mm. Several element layers have to be introduced, not only through the
thickness but also through the width.

Without any treatment, several element layers are only introduced through the thickness (figure 4.17).
A remedy consists in tuning the aforementioned security factor α. For example, we can take α = 9 and
get a better mesh (figure 4.18). In this case, for each selective division of the natural metric, mesh sizes
between the smallest h1 and 10 h1 are divided by n.

The end user may also want n1 element layers through the thickness, n2 through the width and n3

through the length (in 3D). For that purpose, two security factors α1 and α2 are needed, so that mesh
sizes between h1 and (1 + α1) h1 are divided by n1, those between (1 + α1) h1 and (1 + α1 + α2) h1 by
n2, others by n3.

In 4D (space-time mesh), we could use a fourth number of layer n4 and a third security factor α3.
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(a) rear view (b) enlargement

Figure 4.17: Mesh with several element layers through the thickness, but with few element layers through
the width

(a) rear view (b) enlargement

Figure 4.18: Mesh with several element layers through the thickness and through the width
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4.5 Numerical applications

Apart from generating several element layers through the thickness, others applications are possible
for the elliptic interpolation. It can be used for determining the orientation of a polyhedral grain, in
polycrystalline studies [Meskini 2004]. It can also be used to progressively coarsen a mesh, in a multigrid
framework [Janka 2002]. Here, we focus our attention on suitable mesh elaboration, dedicated to mold
filling with Rem3D.

4.5.1 Natural mesh of cavities

Lots of Rem3D simulations concern only the mold cavity, where the fluid is injected. Injection mold-
ing leads to a final part with the same geometry than the mold cavity (except residual strain effects).

A natural metric can be used during the pre-treatment phase, so as to deal with the cavity geometry.
In practice, when the process model is isotherm, n = 5 element layers are enough to interpolate correctly
a viscoplastic front profile with linear elements. When thermal coupling is considered, n = 8 element
layers can be requested, so that the low order heat transfer solver finds enough elements along the highest
temperature gradient (along the thickness direction).

Here, we could not plot all the geometries already treated by a natural metric, since this tool is
provided with Rem3D current versions and is widely used. Instead, we focus our attention on the most
representative cases.

Let us start with the geometry of figure 4.2 page 56, which is composed of several plates whose
thicknesses and orientations are not the same. Since the fluid flow, inside this cavity, is symmetrical, the
non symmetrical gate has been removed and only half of the cavity has been meshed (figure 4.19).

Figure 4.19: Natural mesh of a Plastic Omnium part (87 054 nodes)
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With n = 8, we obtain between 8 and 14 element layers through the thickness (figure 4.20). Transitions
are correctly treated when anisotropy directions change, especially at the interior of plate crossings
(figure 4.21). A good mesh refinement inside these transition zones is very important, so as to make a
3D solver more accurate than a 2.5D solver.

Figure 4.20: The same natural mesh (sectional view through the thickness)

Now, we consider the thin geometry of figure 4.4 page 57, whose particularity is a varying curva-
ture. Thanks to the natural metric, several anisotropic element layers can be introduced automatically
along the curvature (figure 4.22). This type of curved and thin geometries was not easy to manage before.

In what concerns injection gates, an accurate computation is important to determine when the flow
is frozen during the packing and cooling stages [Silva 2004]. Since the geometry is very thin around
injection gates, a coarse mesh, even if a natural metric is employed (figure 4.23(a)), would lead to an
overestimation of the cooling. Thus, a very fine mesh is required in the vicinity of injection gates and we
recommend a manual correction of the natural metric by a more isotropic and finer metric (figure 4.23(b)).

However, the robustness of the natural metric algorithm is enough to treat any industrial geometry,
even a very complex one in 3D (figure 4.24). Without the natural metric, a Rem3D computation could
not have been performed on such a part.
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Figure 4.21: Correct transition between a vertical and a 45◦ oriented anisotropy

Figure 4.22: Natural mesh of a curved and thin geometry (sectional view)
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(a) (b)

Figure 4.23: Manual correction of the natural metric in the vicinity of an injection gate (sectional view)

4.5.2 Limitations and conclusion

The natural metric computed a priori leads usually to suitable meshes for Rem3D, but sometimes
those meshes are not perfect. In fact, four different limitations have been identified. Illustrations of those
limitations are given on figure 4.25 in 2D, so as to fully understand what can happen. However, the same
phenomena are observed in 3D.

The first problem concerns crossing zones (figure 4.25(a)). In this case, an isotropic transition is
needed, instead, the natural metric chooses one dominating anisotropy. This phenomenon is accentuated
during the iterative process. Such crossing zones are widespread in industrial parts.

The second problem concerns notch zones (figure 4.25(b)). In those zones, the thickness size changes
suddenly and several element layers are still needed (so that the flow is not artificially blocked). However,
this local zone is a too small for the natural metric computation. Such notch zones are frequent in electro
technical objects, involving almost cut pieces.

The third problem is raised by small details that are traditionally carved on the mold (figure 4.25(c)).
This kind of detail are not big enough for the natural metric computation. And the flow is artificially
blocked by the natural mesh.

The fourth problem is observed in curved geometries, when too many iterations are performed (fig-
ure 4.25(d)). In this case, element orientation does not follow the local curvature anymore. In fact, the
local anisotropy detection is not stable enough during the iterative process.

Thus, in particular situations, a suitable mesh might not be reachable by an a priori natural metric.
Some of these difficulties disappear in the multidomain framework (third part, page 97). However, in
our monodomain framework, one could improve a natural mesh by a posteriori information, that is,
information gathered after a first Rem3D computation (next chapter).
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Figure 4.24: Natural mesh (174 759 nodes) of figure 3.13’s part
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(a) crossing problem

(b) notch problem

(c) small detail problem

(d) curvature problem

Figure 4.25: Problems encountered by the a priori natural metric (each mesh is obtained after 16 itera-
tions)



Chapter 5

Natural metric corrected a posteriori

With an a priori natural metric (previous chapter), limitations can be observed, preventing us from
generating meshes that are perfectly suitable for Rem3D. We now look for improvements of such meshes,
relying on a posteriori information, based on some computational results.

We still want to deal with anisotropic meshes. In this context, an anisotropic adaption can be based
on a posteriori information, issuing from:

• state variables such as velocity or temperature, interpolated over the computational domain Ω:
these fields present their own heterogeneity; this field heterogeneity can be exploited to orient and
stretch the elements of the mesh

• equation solving on Ω leads to numerical errors, which can be measured and smoothed by a mesh
refining.

Even not perfect, a mesh obtained by an a priori natural metric allows a preliminary computation
to be performed, so as to obtain that kind of a posteriori information. Then, the mesh can be improved
and the compulsory computation can rely on it. In this case, the natural metric is still an a priori metric,
but corrected a posteriori.

In the literature, anisotropic adaption based on error estimation can be performed without metric,
like in [Belhamadia et al. 2004]. In this paper, authors use a hierarchical error estimator, as a goal in
topological mesh optimization. The error and its gradient are thus minimized.

However, anisotropy is generally treated by adaption to a metric, which is generated by a scalar
field Hessian matrix. This Hessian matrix is then truncated by a minimal and a maximal mesh size
[Tam et al. 2000, Leservoisier et al. 2001, Pain et al. 2001, Remacle et al. 2002, Alauzet et al. 2003]. As
already mentioned, this approach (based on interpolation error estimation) induces that, when the Hes-
sian matrix is hyperbolic, an arbitrary projection is applied on the elliptic matrix space.

Here, we propose an alternative (section 5.1) based on a tensorial product of a vector (the gradient
of a scalar field, for instance). The advantages are:

• we cannot obtain a hyperbolic matrix

• a gradient computation is less difficult and more accurate that a Hessian matrix computation.

In what concerns residual error estimation, usual estimators can not deal with mesh anisotropy. We
propose an approach in section 5.2 (page 91), dedicated to error smoothing by a priori metric refining.

83
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5.1 Scalar field heterogeneity

In this section, we address the following issue: how to improve a mesh after some computation results
have been obtained with it? Our answer is based on considering a scalar field u, whose anisotropy is taken
into account. Then, the anisotropic adaption described in chapter 3 (page 35) is used, so as to locally align
mesh elements with the principal directions of u’s heterogeneity and to adapt mesh sizes in each direction.

In fact, all we need is ∇u, the gradient vector of u:

• principal directions of u’s heterogeneity are the direction of ∇u and the directions of d-1 orthogonal
vectors that are also orthogonal to ∇u

• the more the gradient norm ‖∇u‖, the more we need small mesh sizes in the direction of ∇u.

For other directions, the mesh sizes prescribed by the a priori natural can be kept. In this context, we
propose to correct the natural metric by the tensor ∇u⊗∇u (section 5.1.2 page 86), which is an extension
of a 2D study, obtained with the topological mesh generator [Liu 2004].

But previously, a typical computation is described in order to obtain a relevant scalar field u (next
section).

5.1.1 Typical simulation

The basic idea is to compute a representative fluid flow, without processing a full Rem3D simulation
(which would be transient and non linear). A linear Stokes problem is solved once (section 5.1.1.1), for
a cavity full of fluid, with an imposed pressure at one entrance gate and a free pressure at one or several
exit gates (other boundary conditions being zero velocity). Several relevant scalar fields are proposed, so
as to adapt the mesh to the flow (section 5.1.1.2).

5.1.1.1 Simulation conditions

We consider a cavity full of a Newtonian fluid, which is assumed to be incompressible, with sticky
boundary conditions, except at symmetry planes, at entrance and at exit gates (as in figure 5.1). Inertia
forces and gravity are assumed to be negligible, with respect to viscous forces. The fluid flow (with its
aforementioned boundary conditions) obeys to the Stokes equations{

2 η∇ . ε(v)−∇ p = 0
∇ . v = 0

(5.1)

where ∇ . is the divergence operator, η is the fluid viscosity, p is the pressure, v is the velocity vector and

ε(v) =
1
2

(
∇v + (∇v)>

)
(5.2)

is the strain rate tensor.

Equation solving is performed via a mixed and stable finite element formulation: continuous P 1 pres-
sure and continuous P 1 velocity, with a bubble term at each element center, dedicated to approximation
stability (inf-sup condition). This formulation leads to the following linear equation system(

A B
B> −C

)(
U
P

)
=
(

F
0

)
(5.3)

where U contains the velocity degrees of freedom, P contains the pressure degrees of freedom, A and C
are two definite positive symmetrical matrices and F contains boundary conditions about pressure.
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Figure 5.1: Boundary conditions

Figure 5.2: Velocity (vectors) and pressure (color scale)
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Bubble terms are condensed in matrix −C, which makes the system (5.3) symmetrical but not definite
positive. Thus, convergence of the iterative linear solver is not monotonous. System (5.3) is sparse and its
size is four times the number of nodes in the mesh. It is solved iteratively by a conjugate residual method
with ILU(0) preconditioning (ILU(0) stands for incomplete Gauss factorization, without enrichment).

A result is presented on figure 5.2. On the symmetry plane, we can see the Newtonian velocity profile
at the entrance gate and at the exit gate. Furthermore, pressure decreases regularly along the flow.

5.1.1.2 Potentially interesting fields

Among all output fields, we look for a scalar field u, whose heterogeneity would lead to an improve-
ment of the initial mesh. In our example, the initial mesh (figure 5.3(a)) is built with an a priori natural
metric. However, this mesh does not have enough element layers in the crossing zone (figure 5.3(b)).

In this context, we need a scalar field whose level sets capture well this crossing zone. Pressure p is not
a candidate, since its level sets are orthogonal to the flow. However, the acceleration norm γ̄ = ‖(∇ v) v‖
has interesting level sets that capture quite well the crossing zone (figure 5.4). This scalar field can be
used to improved the initial mesh.

On the other hand, the equivalent shear rate

‖ε(v)‖ =

 ∑
16i,j6d

ε2ij(v)

1/2

(5.4)

could be an acceptable candidate, but only in plate zones, not in the crossing zones (figure 5.5).

5.1.2 Natural metric correction

Once the computation is performed and once the scalar field u is chosen, this information has to be
treated in our anisotropic adaption process.

5.1.2.1 Additional term

So as to adapt the mesh to u’s heterogeneity, we do not compute its Hessian matrix (which is difficult
to compute from a continuous P 1 field and more difficult from a discontinuous P 0 field). We prefer to
deal with its gradient vector. In fact, we use the following result, which has been proved within the
multidomain framework (section 6.2.1 page 103).

The graph of u, can be seen as a surface in Rd+1, which can be triangulated according to the following
metric 

0

Mn
natural

...
0

0 . . . 0 µ2

 (5.5)

where 1/µ is the (d+1)-th mesh size that must be introduced, so as to make a triangulation in Rd+1.
This triangulation is then orthogonally projected on Ω, in order to obtain a mesh of this computational
domain. Proposition (6.1) page 104, tells us that it is equivalent to use directly the following metric on
Ω

Maposteriori = Mn
natural + µ2∇u⊗∇u (5.6)
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(a) global view

(b) sectional view

Figure 5.3: A natural mesh to be improved (1 327 nodes)
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Figure 5.4: Acceleration values γ̄ on several cutting planes

Figure 5.5: Equivalent shear rate values ‖ε(v)‖ on the same cutting planes
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The major difficulty is the tuning of parameter µ. This scalar can be interpreted as a penalty co-
efficient that weights the terms ∇u ⊗∇u versus the (a priori) natural metric, except where ∇u is null.
Empirically, µ should be such that the greatest eigenvalue of µ2∇u ⊗∇u is greater that all eigenvalues
of Mn

natural, with two order of magnitudes.

Note that other candidate fields could be found among vector fields ~u. In this case, we could not use
directly ∇~u⊗∇~u, since it would lead to a fourth order tensor. However, we could use

(∇~u)>∇~u (5.7)

or ε(~u) = 1
2

(
∇~u + (∇~u)>

)
(5.8)

which has not been tested yet, but further investigations should be performed in this way.

5.1.2.2 Application

Back to the figure 5.1’s case, with scalar field u = γ̄ (the acceleration norm), if we employs the
additional term µ2∇γ̄⊗∇γ̄ alone (without natural metric), then the mesh obtained after adaption is fine
enough in the crossing zone, but not fine enough where acceleration is almost homogeneous (figure 5.6).

(a) global view (b) sectional view

Figure 5.6: Mesh obtained with the acceleration heterogeneity (920 nodes)

We remark that, in this case, the anisotropic adaption is driven by a matrix field that is not a metric
field, since 0 is always an eigenvalue of ∇γ̄ ⊗ ∇γ̄ (section A.1.2 page 147). However, when the topo-
logical algorithm is performed, an average between nodal matrices is computed, which leads to a metric
when d independent vectors ∇γ̄ are involved (eigenvalue 0 disappears from the averaged matrix). At
worst, a degenerated matrix can lead to an edge with a zero length, which is not crippling for the process.

However, when µ2∇γ̄ ⊗ ∇γ̄ is used in conjunction with the natural metric, as in (5.6), we obtain a
metric field. Furthermore, the natural mesh is automatically refined in the crossing zone and remains
suitable where the acceleration heterogeneity is useless (figure 5.7).
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(a) global view

(b) sectional view

Figure 5.7: Mesh obtained with a natural metric correction by acceleration heterogeneity (5 686 nodes)
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5.2 Error indicator on anisotropic meshes

Another way to improve the natural metric consists in mesh refinement or coarsening (according to
solver needs), without changing anisotropy directions. A multiplicative correction factor can be intro-
duced, which modifies the local mesh sizes in the natural metric field, in order to smooth the numerical
error generated by the solver on the current mesh (section 5.2.1).

So as to determine whether the solver needs a finer mesh or a coarser one, one can use:

• an error indicator, even without an accurate error quantification (section 5.2.1)

• or an error estimator, more precise in error quantification, but also harder to compute on an
anisotropic mesh (section 5.2.2).

5.2.1 Metric corrected by an indicator uniformity

Let αT be an error indicator on a mesh element T ∈ T , and M be a metric to be optimized locally,
so as to smooth the values of αT over the computation domain Ω.

The first step consists in computing the optimal mesh size hoptimal
T of each element T that leads to an

uniformization (and maybe a reduction) of the indicated error. Then, then correction factor, obtained
for hoptimal

T , can be used with the inverse transformation matrix M−1/2 (its eigenvalues are directly the
mesh sizes), so as to get a correction factor for the metric field M .

5.2.1.1 Computation of the local correction factor

We denote by αimposed the error level desired for the indicator αT . Let p be the convergence order of
the finite element method and d be the spatial dimension. Then, mesh adaption theory [Boussetta 2005]
leads to

hoptimal
T =

α
1
p

imposed

α
2

2p+d

T

(∑
T∈T

α
2d

2p+d

T

) 1
2p

hT (5.9)

In fact, αimposed is computed from card(T )imposed, which is the imposed number of elements for the
next adapted mesh, via

αimposed =

(∑
T∈T

α
2d

2p+d

T

) 2p+d
2d

card(T )
p
d
imposed

(5.10)

then, (5.9) can be rewritten as

hoptimal
T =

(∑
T∈T

α
2d

2p+d

T

) 2p+d
2pd

− 1
2p

card(T )
1
d
imposed α

2
2p+d

T

hT (5.11)

=

(
1

card(T )imposed

∑
T∈T

α
2d

2p+d

T

) 1
d

α
2

2p+d

T

hT (5.12)
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Now, if we change our indicator αT into α
2

2p+d

T , we have

hoptimal
T =

(
1

card(T )imposed

∑
T∈T

αd
T

) 1
d

αT
hT (5.13)

then, introducing card(T ), which is the number of elements of the current mesh, it comes

hoptimal
T = β

(
1

card(T )
∑
T∈T

αd
T

) 1
d

αT
hT (5.14)

where β =
(
card(T )/card(T )imposed

)1/d
is the desired error reduction.

We can now introduce the global error on the topology T , defined by

αT =
1

card(T )

(∑
T∈T

αd
T

) 1
d

(5.15)

thus,

hoptimal
T = β

αT
αT

hT (5.16)

Since we want to improve a metric field M , defined on each mesh node S ∈ N , this correction factor
(5.16) is averaged around each node

1∑
T∈T (S)

|T |

∑
T∈T (S)

(
β

αT
αT

)
= β

αT
αS

(5.17)

with α−1
S =

∑
T∈T (S)

|T |α−1
T∑

T∈T (S)

|T |
(5.18)

where T (S) is the set of elements from T , whose S is a vertex.

Since M−1/2 has the same unit than hT , we apply the averaged correction factor with (5.17) and it
comes

M
−1/2
optimal(S) = β

αT
αS

M−1/2(S) (5.19)

Finally, the correction for the metric field itself is

Moptimal(S) =
(

β
αT
αS

)−2

M(S) (5.20)

which can be seen as

Mafter =
(

β
global error
local error

)−2

Mbefore (5.21)
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5.2.1.2 A possible strategy

A question arises of how the coefficient β can be determined. In practice, an end user can choose
between:

• smoothing the error and preserving the same averaged error level, then β = 1 and card(T )imposed =
card(T )

• smoothing and reducing the averaged error level with a factor 2 (for instance), then it comes β = 1/2
and in 3D, card(T )imposed = 8 card(T )

• smoothing and reducing the averaged error level until a given number of elements is attained; in

this case, β =
(
card(T )/card(T )imposed

)1/d

• or smoothing and rising the averaged error level, which corresponds to β > 1.

A low cost strategy could consists in smoothing and not reducing the error, with an error indicator
based on the normalized velocity gradient

αT =
∥∥∥∥(∇ v

‖v‖

)
(T )
∥∥∥∥ (5.22)

In this case, when the velocity direction changes, the mesh becomes more refined and the more the
change is sudden, the more the mesh is refined. This approach has not been tested yet. Nonetheless, it
is an extension of the natural metric that worths mentioning.

5.2.2 Error estimation with the mesh anisotropy taken into account

A second mean to build an error indicator dedicated to smoothing, is to derive an error estimator.
Among all numerical errors that could be estimated, we focus our attention on the error generated by
equation solving. For instance, the residual error estimator for a Newtonian Stokes problem (5.1) is of a
great interest.

We consider the following indicator based on the residual error

αT =

(∑
T∈T

η2
T

)1/2

(5.23)

with ηT =
∑

F∈∂T

λF
T

∥∥ 2 η [ε(v)]FT . ~n(F )
∥∥2

L2(F )
hF + ‖∇ p ‖2

L2(T ) h2
T (5.24)

where λF
T is one half, except when F is a boundary face (in this case, λF

T is zero). In (5.24), [ε(v)]FT is
the strain rate jump across a face F from the element T . Furthermore, hF is the diameter of F and hT

the diameter of T .

It has been proved in [Coupez and Bigot 2000, Bigot 2001] that (5.24) is an error estimator for the
Stokes problem. However, this estimator does not work on anisotropic meshes, since it relies on the
Clément lemma, which is only valid for isotropic meshes. In practice, a 1D Stokes problem (a planar
Poiseuille) can be solved with an increasing accuracy (so, a decreasing exact error) on an anisotropic mesh
series, built with the same element diameter (so that estimation remains constant), by a unidirectional
refinement.

This limitation is avoided by modifying the Clément lemma with a matching function [Kunert 1998,
Kunert 1999, Kunert 2001], also know as an alignment measure [Creusé et al. 2003], since it measures
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the alignment between the mesh anisotropy and the error heterogeneity. Denoting the error by e, this
matching function m1 is defined by

m1(e, T ) =

(∑
T∈T

h−2
min(T )

∥∥∥C>
T ∇e

∥∥∥2

L2(T )

)1/2

‖∇e‖L2(T )
(5.25)

where hmin(T ) is the minimal height of element T and C>
T is the matrix that transforms T in a uni-

tary equilateral element. This scalar function is used as a multiplicative factor for the upper bound of a
residual error estimator. Its value is 1 when the alignment is perfect and strictly greater than 1, otherwise.

Unfortunately, computing m1(e, T ) involves the estimation of error e. Authors advise the use of a
recovering method or the use of super convergence points, which is beyond the scope of this work.

Here we propose a different approach, based on the following remark inspired by the previous work of
[Coupez and Bigot 2000, Bigot 2001]: with the planar Poiseuille problem, where the flow is orthogonal
to the y direction, when diameters are replaced by mesh sizes in direction y in (5.24), then a relevant
error estimation is recovered.

That is the reason why diameters hF and hT should be replaced by h(F, ~d) and h(T, ~d), which are
the sizes of F and T , computed in a specific direction ~d. This specific direction could be the direction of
a gradient (computed from a scalar field, like the velocity norm ‖v‖), which would lead to an automatic
selection of direction y in the planar Poiseuille example.

Computing h(T, ~d) can be efficient, if we use the real symmetrical matrix NT , with d columns and d
rows, solution of the following linear system(

‖Sj − Si‖NT
= ‖Sj − Si‖2

)
16i<j6d

(5.26)

where S0, . . . , Sd are the vertices of element T . In this case, when ~d is unitary, we have

h(T, ~d) = ‖~d‖NT
(5.27)

In what concerns h(F, ~d), it is more complicated, since it involves the computation of NF , the same
matrix associated to a face F , but in the hyperplane containing F .

With these considerations, we obtain the following error indicator

αT =
∑

F∈∂T

λF
T

∥∥∥ 2 η
[
ε(v)

]F
T

. ~n(F )
∥∥∥2

L2(F )
‖~d‖NF

+ ‖∇ p ‖2
L2(T ) ‖~d‖2

NT
(5.28)

with ~d =
∇‖v‖
‖∇‖v‖‖

(5.29)

This is not an error estimator, because an upper bound in direction ~d may not always be a global upper
bound in all directions. However, it would be very interesting to use this new indicator in the smoothing
process, described previously.

These thoughts about an a posteriori metric correction give some further investigation orientations
for future works.
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Introduction

At this stage, a suitable mesh for a monodomain Rem3D simulation can be built. Monodomain
means that the simulation involves only one body (for instance, the mold cavity in the injection process).
However, a simulation can involve several bodies at the same time. In this case, the computational
domain Ω is a compound of p subdomains ωi, such that

Ω = ω1 ∪ . . . ∪ ωp (5.30)

In this document, a subdomain is not a partition generated by a domain decomposition for parallel com-
puting like in [Löhner et al. 1999].

Among all possible multidomain simulation topics, we emphasize the injection process with mold
coupling [Batkam and Coupez 2001] and other material forming processes, like forging with deformable
tools [Barboza et al. 2002]. Other multidomain simulations can be motivated by a computation at meso-
scopique or microscopic scale, like: foam expansion like in [Bruchon and Coupez 2003], over-molding like
in [Coupez et al. 2004] or fiber reinforced molding [Bouchard et al. 2000, Fournier 2003, Megally et al. 2004].

In what concerns the injection process with mold coupling, the following subdomains are taken into
account:

• the mold cavity where the fluid (in red on figure 5.8) flows and where the air is trapped

• the mold itself, maybe divided in several parts (in blue, green and yellow on figure 5.8)

• some thermal regulation channels (appearing by transparency on figure 5.8), where a cooling fluid
flows.

To take the mold into account is very important for a heat transfer study [Batkam 2002], because thermal
boundary conditions are only well known at the exterior of the mold (not between the cavity and the
mold).

When a mesh involves several bodies in interaction (chapter 6 page 99), the natural metric can be
enriched by a surface term, dedicated to interface tracking between subdomains. Thanks to some Rie-
mannian geometry results, we obtain the multidomain metric that can be used in conjunction with a
discontinuous P 0 interpolation of each subdomain characteristic function (VoF, Volume of Fluid).

This multidomain metric can then be applied to discontinuity surface tracking in many meshing
situations (chapter 7 page 115).
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Figure 5.8: A multidomain configuration: mold coupling with thermal regulation (courtesy of Sophysa
and Transvalor)



Chapter 6

Multidomain metric generated a priori

So as to treat a computational domain Ω = ω1 ∪ . . .∪ ωp, one can proceed by three different meshing
strategies:

• to generate one mesh for each subdomain, independently, which leads to p meshes that are non
conforming (figure 6.1(a))

• to generate one (conforming) mesh whose internal faces give a precise triangulation of interfaces
between subdomains (figure 6.1(b))

• to generate one (conforming) mesh where interfaces between subdomains are (fuzzily) immersed
(figure 6.1(c)); in this case, an element of the mesh can be filled with two distinct subdomains (or
more).

(a) several independent meshes (with
an artificial offset)

(b) a unique mesh with pre-
cise interfaces

(c) a unique mesh with fuzzy
interfaces (and a natural
anisotropy

Figure 6.1: Three meshing strategies for a multidomain simulation

The first approach is widely used in multi-body forging [Barboza et al. 2002] or in aero-elasticity
[Lesoinne and Farhat 1996]. From a meshing point of view, this is the most simple approach since mesh-
ing p bodies independently is straightforward. However, its main drawback is the contact treatment,
because information has to be transported from one mesh to another (so that interactions between sub-
domains are correctly taken into account). The use of contact elements [Barboza et al. 2002], mortar

99
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elements [Ben Belgacem et al. 1995] or other techniques like [Maman and Farhat 1995], leads to many
geometrical localization during the computation.

The second approach, used for instance by [Jacquotte 1989], has been initially chosen for Rem3D so
as to avoid those expensive localizations [Batkam 2002]. Indeed, with one (conforming) mesh for the
whole domain, sub-meshes corresponding to subdomains are perfectly connected. However, in practice,
this approach involves several complex meshing operations:

• firstly, a mesh of the first subdomain is generated (from a first mesh of its boundary)

• secondly, the boundary of this mesh is extracted and merged with the mesh of the second subdomain
boundary

• thirdly, a mesh of the second subdomain is generated without modifying the common boundary
mesh with the first subdomain

• then, these operations are iterated, so as to treat all subdomains

• all sub-meshes are merged in a unique global mesh (this step is the less difficult one).

This approach implies three major drawbacks:

• the end user has a lot of manual work to do, with an exponential growth when the subdomain
number rises

• CAD operations on each subdomain are constrained by the presence of other subdomains

• meshing (and remeshing) operations are also strongly constrained by the internal interface tracking.

Currently, because of these difficulties, the multidomain capabilities of Rem3D are not widely used.

For that purpose, we propose a third approach that consists in generating a single mesh, which
captures interfaces between subdomains. Such an interface capture is automatically performed by a
mesh refining in the vicinity of subdomain boundaries. The end user has no manual operation, however,
some new drawbacks arise:

• the refinement, even with a relevant anisotropy, introduces more nodes than other approaches
(computation is then more expensive, but also more accurate)

• interfaces are fuzzy, which requires that the solver1 can deal with mixed elements (a mixing between
several subdomains).

In this chapter, before this third approach is described (section 6.2), section 6.1 shows how to use a
natural metric inside each subdomain (in the framework of both second and third approaches).

1fortunately, this is the case with Rem3D solvers
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6.1 Natural sub-mesh

A natural mesh for the computational domain Ω is no more interesting in the multidomain framework.
In fact, a mesh is required with several element layers through the thickness of each subdomain. In the
subdomain ω1, a natural metric for ω1 needs to be computed, in the subdomain ω2, it is a natural metric
for ω2 that is required and so on.

6.1.1 Exact interfaces

If each subdomain ω is triangulated by a sub-mesh of Ω’s mesh (the second approach, with exact
interfaces), then this sub-mesh could be extracted and a natural metric can be computed like in the
previous part. In practice, such an extraction is not performed, but the natural metric of each subdomain
is computed directly on Ω’s mesh, by introducing minor modifications to chapiter 4:

• if the node S ∈ ω, then the natural metric computed in S is the natural metric of ω (when S
belongs to several subdomains, an averaged metric is considered)

• in order to get a metric that is a natural one of ω, nodes not belonging to ω are not taken into
account during the neighborhood Nk(S) growing

• boundary nodes and boundary faces of interest are not those of Ω but those of ω.

These modifications work well with a multidomain mesh, whose interfaces are exact (second ap-
proach). It is the case on figure 6.2, where a tube is twisted in a cube geometry, each subdomain (inside
and outside the tube) being triangulated with a natural metric.

In this second approach, nodes lying on an interface are often locked during the adaption process, so
as to ensure conforming interfaces. This constraint is removed when fuzzy interfaces are considered (the
third approach, next section).
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Figure 6.2: A bidomain mesh (18 714 nodes) with an exact interface (sectional view)

6.1.2 Fuzzy interfaces

When interfaces are fuzzily interpolated, to determine boundary nodes and boundary faces of a sub-
domain ω is more complicated. Some technical adjustments (described in appendix B.2 page 169) are
required, but the computation of a natural metric field Mnatural on Ω that is locally a natural metric for
each subdomain ω1, . . . , ωp is still possible.

Again, mesh sizes of this metric field can be divided, so as to obtain n element layers through the
thickness in each subdomain. The notation Mn

natural is still used, despite the fact that n can be different
from one subdomain to another.

At this stage, thanks to Mn
natural, the mesh of Ω is adapted specifically in each subdomain, but the

mesh is not fine enough in the vicinity of interfaces. For that purpose, a surface term has to be added
(next section).
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6.2 Discontinuity surface capturing

Each subdomain can be represented by its characteristic function, whose discontinuities are located
at the subdomain boundary. In 3D, interfaces between subdomains are internal discontinuity surfaces
of Ω. For some interpolation reasons, the mesh needs to be refined in the vicinity of such discontinuity
surfaces.

6.2.1 Interface tensor

Let us first define the characteristic function of a subdomain.

Definition 6.1 the characteristic function of a subdomain ω is the function 11ω : Ω → {0, 1} such that

11ω(x) = 1 ⇔ x ∈ ω (6.1)

Our multidomain metric computation relies on the evaluation of a characteristic function gradient.
Since the gradient of 11ω is zero almost everywhere, we consider a regular approximation of the charac-
teristic function. For instance, we could consider the following sigmoid

fω(x) =
1

1 + eβd(x, ∂ω)
(6.2)

where β � 1 and d(x, ∂ω) is the signed distance between x ∈ Ω and the boundary ∂ω (more precisely,
d(x, ∂ω) 6 0 when x ∈ ω et d(x, ∂ω) > 0 when x /∈ ω). For a circular subdomain ω, with center c = (0, 0)
and radius r = 1, this sigmoid is plotted on figure 6.3.
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Figure 6.3: Function fω with d(x, ∂ω) = ‖x− c‖2 − r

The graph of fω, denoted by

Fω =
{

x ∈ Rd+1 such that (x1, . . . , xd) ∈ Ω and xd+1 = fω(x1, . . . , xd)
}

(6.3)

is a variety of Rd+1 and its dimension is d. Basically, our method consists in triangulating this variety
with a natural metric in what concerns the d first cartesian directions and with a mesh size of 1/m in
the last direction. After orthogonal projection on Ω, we obtain a mesh of Ω. This mesh is then in the
vicinity of ∂ω, with m element layers in this zone.
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In other words, the variety Fω is triangulated with the following metric

M(x1, . . . , xd+1) =


0

Mn
natural(x1, . . . , xd)

...
0

0 . . . 0 m2

 (6.4)

This is a metric of Rd+1 that induces (by orthogonal projection) a metric of Rd on Ω (see the following
proposition). In practice, Fω is not triangulated and there is no orthogonal projection on Ω, but we use
directly this induced metric (it gives the same result).

Proposition 6.1 the induced metric on Ω by orthogonal projection of the metric M defined by (6.4) on
the variety Fω is

Mω(x1, . . . , xd) = Mn
natural(x1, . . . , xd) + m2∇fω(x1, . . . , xd)⊗∇fω(x1, . . . , xd) (6.5)

In other words, the aforementioned technique is equivalent to the addition of tensor m2∇fω ⊗ ∇fω

to the natural metric.

Proof : we denote by π the orthogonal projection on Rd

π(x1, . . . , xd+1) = (x1, . . . , xd) (6.6)

From Riemannian geometry [do Carmo 1988, Jost 1998], the induced metric of M on Ω (with its map π)
has the following components

M ij
ω =

(
∂π−1

∂xj

)>
M

∂π−1

∂xi
(6.7)

Since on Fω we have

π−1(x1, . . . , xd) = (x1, . . . , xd, fω(x1, . . . , xd)) (6.8)

it comes

∂π−1

∂xi
=
(

δ1i, . . . , δdi,
∂fω

∂xi

)>
(6.9)

Thus, we obtain

M ij
ω =

(
δ1j , . . . , δdj ,

∂fω

∂xj

)
M

(
δ1i, . . . , δdi,

∂fω

∂xi

)>
= (δ1j , . . . , δdj) Mn

natural (δ1i, . . . , δdi)
> + m2 ∂fω

∂xj

∂fω

∂xi

= (Mn
natural)

ij + m2 (∇fω ⊗∇fω)ij

which is exactly the metric (6.5). �

This analytical result has already been used by [Hoch and Rascle 2003] in 2D. Chapter 7 is devoted
to 3D applications of this results, which is in fact established for all dimensions.

However at this stage, the natural metric computation would involve the expensive evaluation of
function fω. In practice, fω is replaced by a less expensive function gω such that gω = 1 inside ω, gω = 0
outside and 0 < gω < 1 in the vicinity of ∂ω (following section).
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6.2.2 Discontinuous P 0 interpolation and voxelization

We consider a discontinuous P 0 interpolation of the characteristic function 11ω, via the function
gω : Ω → [0, 1] defined almost everywhere by

∀T ∈ T ∀x ∈ T̊ gω(x) = gω(T ) =
|T ∩ ω|
|T |

(6.10)

where | | is the Lebesgue measure (ω is assumed to be measurable). This function is used in the multido-
main metric computation, for some reasons related to the following proposition.

Proposition 6.2 approximation errors are exactly∫
Ω

(gω − 11ω) dx = 0 (6.11)

‖gω − 11ω‖L2(Ω) =

(∑
T∈T

gω(T ) (1− gω(T )) |T |

)1/2

(6.12)

In other words, gω is a conservative approximation of 11ω (6.11) and diffusion is low, when partially
filled element T (those such that 0 < gω(T ) < 1) are small (6.12).

Proof : we have ∫
Ω

(gω − 11ω) dx =
∑
T∈T

∫
T

(gω − 11ω) dx (6.13)

=
∑
T∈T

(
|T ∩ ω|
|T |

|T | − |T ∩ ω|
)

(6.14)

= 0 (6.15)

which proves (6.11). Furthermore, we have

‖gω − 11ω‖L2(Ω) =
(∫

Ω
(gω − 11ω)2 dx

)1/2

(6.16)

=

(∑
T∈T

∫
T

(gω − 11ω)2 dx

)1/2

(6.17)

Since gω is constant on T , it comes∫
T

(gω − 11ω)2 dx = gω(T )2|T | − 2gω(T )
∫

T
11ω dx +

∫
T

112
ω dx (6.18)

Besides,
∫

T
11ω dx = |T ∩ ω| and 112

ω = 11ω, so

∫
T

(gω − 11ω)2 dx = gω(T )2|T | − 2gω(T )|T ∩ ω|+ |T ∩ ω| (6.19)

Using |T ∩ ω| = gω(T )|T |, we obtain∫
T

(gω − 11ω)2 dx = gω(T )|T | (gω(T )− 2gω(T ) + 1) (6.20)

which proves (6.12). �
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ω

T

(a)

n(F)
T(F)

F

T

(b)

Figure 6.4: Element sampling and notations for the P 0 gradient

In practice, the function gω is computed with an approximated filling ratio of each element. This
approximation is performed for an element T ∈ T , by sampling T with many interior points (such a
sampling algorithm is given in appendix B.3.1 page 171). Then, the points that belong to ω are counted
(figure 6.4(a)).

The estimated filling ratio of T ∈ T is

|T ∩ ω|
|T |

' number of points in ω

total number of points
(6.21)

So as to efficiently determine whether a point belongs to ω or not, no expensive localization of this
point, in a mesh of ω, is used. Instead, we prefer use a voxelization of ω, because this objet gives the
answer in a constant time (appendix B.3.2).

6.2.3 Discontinuous P 0 gradient and triple point treatment

The function gω is P 0 discontinuous and a we need to define a numerical gradient of gω that is not zero
almost everywhere. For that purpose, we consider the vectorial P 0 discontinuous function ∇gω : Ω → Rd

defined almost everywhere by

∀T ∈ T ∀x ∈ T̊ ∇gω(x) = ∇gω(T ) =
∑

F∈∂T

gω(T (F ))− gω(T )
|T (F )|+ |T |

|F |~n(F ) (6.22)

where ∂T contains the faces of T , T (F ) is the opposite element of T through F (there exists always one
opposite element, since virtual element are considered, making T without boundary) and ~n(F ) is the
outgoing normal of T on F (figure 6.4(b)).

Even with virtual elements, such a P 0 gradient requires boundary conditions. Generally, when F is
a boundary face, we take |T (F )| = ∞, which is an adiabatic boundary condition. However, if we take
|T (F )| = 0 and gω(T (F )) 6= gω(T ), then a boundary layer is generated in the vicinity of Ω’s boundary,
which can be sometimes useful.

This gradient definition is motivated by the fact that it is a first order approximation of 11ω’s gradient
[Coupez and Baranger]. In fact, ∇gω(T ) is a linear combination of outgoing normals of T , each term
being weighted by the jump of gω across the face, by the face measure and by the measures of elements
who share this face.

This gradient enables us to apply the previous metric building on gω (and not on fω). However, Ω is
composed of several subdomains ω1, . . . , ωp with respective functions gω1 , . . . , gωp . So, for each component
1 6 i 6 d, we consider the maximal gradient

∇g(T )i = max
(
∇gω1(T )i, . . . ,∇gωp(T )i

)
(6.23)
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which leads, empirically, to a good treatment of triple (or more) points (figure 6.5(b)). Indeed, according

(a) multidomain mesh with triple points (b) enlargement of the bottom left triple point

Figure 6.5: Two overlapping subdomains (equivalent to three subdomains), involving two triple points

to appendix A.1.3.2 page 151, the max operator leads often to an isotropic metric when applied to distinct
metrics. In our case, an isotropic mesh is relevant around a triple point.

The final P 1 (continuous) multidomain metric field is obtained by applying formula (6.5) and by
regularizing the P 0 discontinuous tensor ∇g ⊗∇g around each node S, which gives

Mmultidomain(S) = Mn
natural(S) + m2∇g(S)⊗∇g(S) (6.24)

with ∇g(S) =

 ∑
T∈T (S)

|T |∇g(T )

/ ∑
T∈T (S)

|T |

 (6.25)

where T (S) contains the elements of T whose S is a vertex.

It should be noted that the mesh of figure 6.5(a) has been generated by considering two circular
subdomains that overlap themselves. In other words, even if it has no physical meaning, overlapping
subdomains can be treated by the method presented here.

6.2.4 Capillary number and final algorithm

Before the complete algorithm is described, the multiplicative parameter m of (6.25) has to be deter-
mined. Since m can be interpreted as the desired number of element layers in the vicinity of an interface,
its value could be chosen by the end user. However, m is treated as a numerical parameter whose value
is automatically chosen, in order to ensure the interface capturing.

So as to understand the influence of m, we consider a bidomain over-molding case where a simple
part is injected on a pierced reinforcement (figure 6.6). In this configuration, if we choose a constant (and
quite low) value for m, then, the quality of interface capturing depends strongly on the natural mesh
around interfaces (figure 6.7).
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Figure 6.6: Over-molding case, including a pierced plate

Figure 6.7: Ill interface capturing
(the scalar field in color scale is gω: red elements are full, blue ones are empty)

In fact in (6.24), m2 behaves like a penalty coefficient between the natural metric Mn
natural and the

additional tensor ∇g ⊗ ∇g. Empirically, to ensure a good capturing of interfaces between subdomains,
the term m2∇g ⊗∇g needs to be two order of magnitude greater than the natural metric, except where
the gradient ∇g is zero.

That is the reason why, m is computed automatically from the following capillary number

λmax(Mn
natural)

λmax(∇g ⊗∇g)
(6.26)

which is the ratio between the volume term Mn
natural and the surface term ∇g ⊗∇g (where λmax is the

greatest eigenvalue operator). Locally, for each node S we consider

m2(S) = 256 ∗
λmax(Mn

natural(S))
λmax(∇g(S)⊗∇g(S))

(6.27)

From our experience, 256 is the first power of 2 that always leads to a good interface capturing (figure 6.8).
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Figure 6.8: Good interface capturing after that coefficient m has been tuned

At this stage, the computational algorithm for the multidomain metric field Mmultidomain is complete.

Algorithm 6.1 after voxelization of the subdomains, we proceed as follows:

for each subdomain ω do
– computation of ω’s natural metric and assembling in the global natural metric field
– computation of gω, the P 0 discontinuous interpolation of ω’s characteristic function
– computation of gω’s gradient and assembling in the global gradient ∇g

done
– regularization of the global gradient ∇g into a P 1 continuous field
– computation of the tensorial product ∇g ⊗∇g
for each node S of the mesh do

– computation of the penalty factor m2(S)
– addition of the term m2(S)∇g(S)⊗∇g(S) to the global natural metric field

done

Except for the natural metric computation, the algorithmic complexity of these operations is linear
with the problem size. The complexity of the multidomain metric computation has the same order than
the natural one. Memory consumption is linear with the problem size.
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6.2.5 Iteration process and convergence criterion

The first mesh generated by adaption to the multidomain metric is never perfect. So, the preceding
algorithm is employed in an iterative process between metric generation and mesh generation. In order
to illustrate such an iterative process, we consider an industrial bidomain case, where a subdomain ω is
the cavity of our biomedical test case (voxelization is given on figure B.2 page 172). The mold around
the cavity is simply a parallelepiped (figure 6.9(a)).

(a) initial mesh (b) iteration 1 (13 514 nodes) (c) iteration 2 (69 518 nodes)

(d) iteration 3 (37 028 nodes) (e) iteration 4 (31 599 nodes) (f) iteration 5 (25 685 nodes)

Figure 6.9: Iterative process of the anisotropic adaption to a multidomain metric

Without limitation, this iterative process would indefinitely refine the mesh around interfaces. That is
the reason why a minimal mesh size hmin is prescribed to truncate the multidomain metric (all eigenvalues
greater than h−2

min are corrected). The value of hmin should be small enough to ensure interface capturing,
but still greater than ε, the voxelization precision (otherwise, the voxel shape appears in the adapted
mesh). The use of this minimal mesh size makes the process converge (figure 6.10).

The relative L2 approximation error, defined by (6.12), measures the diffusion (the fuzzyness) around
interfaces. Its stability is a good convergence indicator, in complement with the number of nodes. History
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Figure 6.10: Convergence history of the multidomain metric iterative process

against iteration number (figure 6.10) shows that, in this case, the L2 error indicator converges faster than
the number of nodes. The final value of this indicator depends on intrinsic limitations of the method, on
hmin and on interface geometry.

In what concerns this example, the mesh is quite stable after 8 iterations, which is a common value.
Remembering that 8 iterations are not enough to obtain a convergence of the natural metric, in the mon-
odomain framework (figure 4.14 page 73). The multidomain framework seams to speed up the natural
metric convergence. Especially the number of element layers (figure 6.11), even if the final value is not
exactly the required number of element layers. This better convergence is certainly due to the fact that
the position of a subdomain boundary is not constrained on a surface but in the diffusion zone (it is a
fuzzy interpolation advantage).

A sectional view of the last mesh (24-th iteration) shows that a good adaption is, not only, attained
on the symmetry plane (figure 6.12(b)), but also, inside the computational domain (figure 6.12(a)). On
this sectional view, the mesh is clearly refined in the vicinity of the interface between ω and its comple-
ment Ω\ω, with a relevant anisotropy (aligned with this surface curvature). Furthermore, the number
of element layers around the interface is about 4 or 5 (figure 6.12(b)). This value is enough for our
applications, but it would be hard to increase or to decrease it (since we automatically use the parameter
m as a penalty factor).

The scalar field gω, which is the discontinuous P 0 approximation of ω’s characteristic function, is
plotted for the symmetry plane on figure 6.13. It shows that, at most, two elements layers are crossed
by the boundary of ω. These elements are partially filled, that is why they are neither blue nor red on
figure 6.13(b). Since these elements are very thin (figure 6.14(b)), the L2 interpolation error is low.
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Figure 6.11: Convergence of the number of element layers, for the same case

(a) sectional view (orthogonal to the symmetry
plane)

(b) enlargement of the symmetry plane

Figure 6.12: 24-th iteration mesh
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(a) symmetry plane

(b) enlargement

Figure 6.13: Approximated characteristic function gω, interpolated on the 24-th iteration mesh
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Besides, after extraction of sub-meshes corresponding to ω (figure 6.14(a)) and its complement Ω\ω

(a) elements such that gω > 0.9 (b) elements such that 0.1 6 gω < 0.9

(c) elements such that gω < 0.1

Figure 6.14: Sub-meshes of the 24-th iteration (extraction is performed by filtering gω)

(figure 6.14(c)), we can see the natural mesh inside each subdomain.

Finally, this method can be seen as detection and iterative refinement of elements in the vicinity of an
interface, like in [Tezduyar et al. 1998, Stalický and Roos 1999, Aguilar-Villegas 2000]. The originality
of the technique presented here, is the automatic anisotropy obtained for these elements and the fact
that very complex 3D geometries can be treated (next chapter).



Chapter 7

Numerical applications

Many application fields could be concerned with multidomain meshes. We focus our attention on ma-
terial forming (by finite element technology). Firstly, some Rem3D problems are addressed (section 7.1),
then, some applications devoted to modelling at fine scale are presented (section 7.2 page 123), before the
multidomain metric is proved to be efficient in boundary layer meshing (section 7.3 page 127). Lastly,
a new mesh generation process can be derived from multidomain adaption and interface capturing (sec-
tion 7.4 page 132).

Another multidomain approach has already been investigated by [Tezduyar and Osawa 2001], where
different numerical solvers are run successively on overlapping subdomains. The coupling presented here
between subdomains is thought to be stronger, since all degrees of freedom are solved simultaneously.

7.1 Polymer forming

Within the framework of Rem3D, the concept of a multidomain simulation has been successfully intro-
duced by [Batkam 2002]. Such a simulation can concern thermal coupling with the mold or over-molding
with a solid insert. Previous computations were performed with the painfully technique of exact interfaces.

Such configurations are now revisited with the use of fuzzy interfaces (sections 7.1.2 and 7.1.3). But
before, the section 7.1.1 is devoted to the comparison between the results obtained with exact and with
fuzzy interfaces.

7.1.1 Validation of the fuzzy multidomain approach

So as to study the influence of the fuzzy interface approach on Rem3D results, we consider the bido-
main test case of figure 7.1 (a twisted tube in a cube). The exact interface mesh is already given on
figure 6.2 (page 102) and a sectional view of the fuzzy interface mesh, generated by a multidomain metric
is plotted on figure 7.2.

The same computation is performed on both meshes. It consists in a viscoplastic fluid (with a power
law, whose consistency is 1230 Pa and exponent 0.75), initially at 250◦C and injected by one side of the
tube with a constant pressure of 1 MPa (the other side of the tube being at zero pressure). The steel
mold (considered as quasi-rigid), initially at 100◦C, is cooled by the ambient temperature of 25◦C, while
the air trapped inside the tube is initially at 50◦C (in fact, the air is a third subdomain that flows in
front of the fluid subdomain, in the same sub-mesh representing the tube).

In what concerns the computation with a fuzzy interface, if we consider a linear mixing law between
subdomains, then a thin layer of air is artificially trapped between the mold and the fluid, during the
filling stage. Since the air is modelled with a low conductivity, heat transfer between the fluid and the
mold is wrong, which results in a wrong temperature field and wrong mechanical parameter values. The

115
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Figure 7.1: Validation test case for the fuzzy interface approach

Figure 7.2: Sectional view of the bidomain mesh (69 201 nodes)

mixing law has thus been modified in disfavor of the air material.

Meshes of both approach have different sizes:

• 18 714 nodes for the mesh with an exact interface

• vs. 69 201 nodes for the mesh with a fuzzy interface.

This explains the difference between computation times (2.5 hours vs. 13 hours). However, the finer
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mesh gives a better accuracy about the flow front (figure 7.3) and the temperature field (figure 7.4).

(a) fuzzy interface

(b) exact interface (where the filling ratio is converted in a P 1 field, loosing the exactness)

Figure 7.3: Flow front (surface of the 50% filling ratio levelset) at timesteps t=1.5 s, 3 s, 4.5 s et 6 s

Theses results are obtained on very different meshes, but the same CAD and the same natural metric
have been used for both subdomains. The only difference is the interface treatment, for which the fuzzy
approach leads to much more elements.
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(a) fuzzy interface

(b) exact interface (same scale)

Figure 7.4: Temperature field (◦C) on the same cutting plane at t=3 s and 6 s

It can be seen on figure 7.4(a) that the air layer at 50◦C is not fully eliminated between the mold and
the fluid. Further investigations on the mixing law are required.
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7.1.2 Injection molding with a complex geometry and thermal coupling

Simulating the injection molding process, with a good accuracy, requires thermal computations not
only inside the mold cavity, but also inside the mold itself, sometimes composed of heterogeneous parts,
with thermal regulation channels. Here, we study a classical industrial test case (introduced on figure 5.8
page 98), with the multidomain mesh (158 778 nodes) of figure 6.1(c) page 99.

The simulation concerns only the filling stage, other stages (cooling and packing) being less demand-
ing about the mesh. The fluid (with the same rheology than in the previous section) is injected with
an imposed rate of 1000 mm3.s−1, at a temperature of 250◦C. The mould consists in three (quasi) rigid
parts, all initially at 50◦C, but with different densities, specific heat and conductivity. The ambient tem-
perature is still 25◦C, which is also the cooling temperature imposed in the thermal regulation channels.

Rem3D can perfectly deal with a multidomain mesh and fuzzy interfaces, so, the simulation has suc-
ceeded and the flow front evolution is given on figure 7.5. For the first time, this kind of anisotropic
mesh has proved to be compatible with the mechanical solver (in what concerns the thermal solver, it
was already known).

The final temperature field on the symmetry plane is given on figure 7.6. The thermal computation
has also succeeded, in particular, there is no artificial self heating of partially filled elements (between
the mold and the fluid). This kind of artificial self heating could have happened, since in those elements
the averaged viscosity is rather high and the velocity field is not strictly zero.

These results are qualitatively close to those obtained with exact interfaces (not mentioned here).
However for this example, treated by fuzzy interfaces, the end user only provides the CAD of the three
mold parts and the CAD of the global computational domain independently (and the desired number of
element layers inside each sub-mesh).

7.1.3 Over-molding

Other polymer forming processes can be treated by a multidomain technique, like multi-fluid injec-
tions (co-injection, gas or water assisted injection, for instance). Unfortunately in these cases, positions
of the fluids are not known before the computation is run. A static a priori multidomain mesh could not
capture such moving interfaces: a dynamic adaptive meshing is required.

A R-adaption technique, like [Bigot 2001], could be invoked during the computation so as to tighten
the mesh (assumed to be fine enough) around moving interfaces. A R-adaption consists only in node
position changing, not in mesh topology changing (contrary to remeshing). In [Bigot 2001], this node
position changing is used to shrink the partially filled elements (in the vicinity of an interface between
several subdomains). This mesh operation introduces a mesh velocity, which implies the use of an ALE
(Arbitrary Lagrangian-Eulerian) formulation of equilibrium equations.

However, in what concerns the injection process on solid insert (over-molding), the position of the
insert subdomain is known at the beginning (even if it can move during the process). An a priori mul-
tidomain mesh can then be built, so as to capture the interface between the insert and the cavity around.
An example has already been given on figure 6.8 (page 109), where the insert and the cavity are depicted
on figure 6.6 (page 108).

Here, we consider a second example, inspired by [Coupez et al. 2004], which deals with injection on
deformable blades. The simple geometry of interest (courtesy of Snecma Propulsion Solide) involves a
unique rectangular blade, considered as the insert (figure 7.7). A bidomain mesh is generated with very
fine elements around the interface between the insert and the cavity (figure 7.7(a)).
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(a) (b)

(c) (d)

Figure 7.5: Filling ratio (50% levelset after P 1 averaging) during the filling stage
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Figure 7.6: Temperature at the end of the filling stage, on the symmetry plane
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Furthermore, the interface, between the injected fluid and the air trapped inside the cavity, is not
captured by the multidomain metric before the computation. Instead, this interface is captured by
the aforementioned R-adaption dynamically, during the computation. Thanks to this R-adaption, the
diffusion of the filling ratio interpolation is highly reduced (figures 7.7(b) and 7.7(c)).

(a) initial configuration (b) intermediate configuration

(c) intermediate configuration (d) final configuration

Figure 7.7: Over-molding: evolution of the fluid filling ratio (red elements are full, blue ones are empty)

In this simulation, the fluid has not the same initial position above and under the blade, which pre-
vents the blade from remaining at the same position during the process. The fluid front above the blade
is delayed, which induces a raising of the insert, until its final position (figure 7.7(d)). This raising makes
the fluid even more delayed above the blade.

In fact, the moving interface between the insert and others subdomains (the fluid and the air) is
followed dynamically by the same R-adaption technique. Since the mesh is initially very refined around
this interface, this capturing remains accurate during the (quite small) movement. In other words, the
R-adaption technique is improved by the use of a mesh generated by a multidomain metric.

This example shows also that an ALE framework (where the mesh velocity is given by the node
position changing of a R-adaption) can be used in conjunction with a mesh generated by a multidomain
metric (only Eulerian computations has been presented, up to now).
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7.2 Computations at microscopic scale

Multidomain meshes are not limited to the macroscopic scale; they can also be useful for computations
at finer scales. Numerical studies of material behaviors can take the microstructure into account, with
many heterogeneities between the components (macroscopic laws can then be deduced by homogenization
techniques).

In such simulations, each component can be seen as a subdomain and the microstructure involves
interactions between many subdomains. In general, the microstructure mesh needs to be very fine in the
vicinity of interfaces between components (and coarser inside each subdomain). The multidomain metric
is a good candidate for that purpose.

Here, we present two applications coming from our research center: a rigid inclusion movement induced
by a pure shearing flow (section 7.2.1) and a compression test on a polycrystalline sample (section 7.2.2).

7.2.1 Rigid inclusion movement in a pure shearing flow

We consider a rigid and spherical inclusion in a viscous fluid, subjected to a pure shearing flow (fig-
ure 7.8). The aim of this study [Ménard 2003] is to compare the results obtained by a 3D model to those

Figure 7.8: Parallelepiped computational domain, with a spherical inclusion and imposed shearing bound-
ary conditions (arrows)

obtained by a 2D model (hopefully, the multidomain metric works, whatever the spatial dimension is).

Focusing our attention on the 3D case, the computational domain is a simple plate and its subdo-
mains are the rigid sphere (representing a gel inclusion), located at the center, and its complement (a
polymeric matrix). The mesh has been highly refined around the interface between both subdomains, by
the multidomain metric method with a fuzzy interface (figure 7.9), so as to interpolates accurately the
strong gradients that take place in this region (figure 7.10). Without interface capturing and refinement,
the P 0 discontinuous interpolation of the inclusion characteristic function would present a high numerical
diffusion, which would lead to non accurate results.

One of the results obtained in this study is given figure 7.11, where some vortices can be seen around
the sphere (the sphere appears in green, as the 50% levelset of the approximated filling ratio, after a
continuous P 1 averaging).
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Figure 7.9: Sectional view of the mesh, after interface capturing by a multidomain metric

Figure 7.10: Velocity field on a cutting plane
(the inclusion behaves like a rigid body, but its movement is not imposed, instead, it results from the

shearing flow)

Figure 7.11: Some particle tracing around the inclusion
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7.2.2 Polycrystalline deformation

Other finite elements computations than Rem3D could benefit from the multidomain metric. Still in
material forming, some results obtained by [Rey 2003] with Forge3 are presented here, involving meshes
driven by a multidomain metric.

In this section, computational compression tests are performed on metal samples, consisting of sev-
eral polyhedric grains, as a model of experimental tests on polycrystalline aggregate. Each grain is a
Voronöı cell (indeed, a homogeneous crystallization from several random germs leads to Voronöı cells)
and the sample is a 3D Voronöı diagram (figure 7.12(a)). Each Voronöı cell is a subdomain (the global

(a) sample with 10 Voronöı cells (b) corresponding mesh with 11 597 nodes

Figure 7.12: Cylindrical sample for compression tests

computational domain being a cylinder). The sample is meshed with an interface capturing between
grains (figure 7.12(b)). The final mesh has a reasonable size (about 1 000 nodes for each grain) and is
refined enough around each grain, so that an accurate simulation can be run.

First simulations with Forge3 are concerned with an uniaxial compression, involving a simple viscous
modelling of the material, with a different viscosity for each grain (heterogeneity is taken into account).
The multidomain mesh is compatible with the computation, since 70% of compression are attained with-
out remeshing. It is thus proved that a mesh generated by a multidomain metric can be useful, even in
a pure Lagrangian formulation (Forge3).

Further simulations has been performed, involving a more representative material law (with crystalline
orientation taken into account) for each grain. Again, the finite strain is tolerated by the multidomain
mesh [Rey 2003].

This polycrystalline study shows also that there is no limit about the number of subdomains: on
figure 7.14, a cylindrical sample with 50 subdomains has been meshed.
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Figure 7.13: Compression test between two rigid plates
(the color scale plots the equivalent von Mises stress and the bottom plate appears is in blue)

Figure 7.14: Another sample with 50 grains
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7.3 Boundary layers

In many simulations, usually in computational fluid dynamics, a boundary layer is required for the
mesh. More precisely, several elements layers aligned with the boundary are needed, within a specific
thickness [Jansen and Shephard 2001]. In what concerns Rem3D, a mesh with a boundary layer (even if
this layer is not accurate) would be interesting, since it would lead to a better approximation of:

• the temperature gradient between the injected fluid and the mold

• the final polymer layer after a gas-assisted injection process

• the presence of a thin lubricant layer.

So as to build such a boundary layer, several techniques can be considered: without metric (as a
mesh extrusion from the boundary [Garimella and Shephard 1998]) or with a metric (for a mesh size to
be imposed orthogonally to the boundary [Castro-Dı́az et al. 1997]). In the Rem3D framework, a simple
(and undocumented) node moving technique towards the boundary has been widely used.

In fact, the multidomain metric leads straightaway to a totally new alternative (section 7.3.1). How-
ever, for the thickness of the boundary layer to be accurately controlled, a more powerful technique is
proposed (section 7.3.2).

7.3.1 Monodomain mesh improvement

As evoked in section 6.2.3 (page 106), the P 0 gradient computation can use non adiabatic boundary
conditions (adiabatic means no jump across the boundary faces). If an infinite jump of the characteristic
function is considered across the boundary faces, then the multidomain metric tends to adapt the mesh in
the vicinity of the (global) boundary. It is not always required, since this boundary is already triangulated
by the mesh boundary. However, several element layers introduced in this region (figure 7.15), as if it
were an interface between subdomains, can be interesting.

Some adiabatic boundary conditions can still be used, where such a boundary layer is not useful (on
entrance or exit gates and on symmetry planes, for example). This is the case on figure 7.16, where the
symmetry plane and the entrance gate have no boundary layers.

7.3.2 Boundary layer with a fixed thickness size

Unfortunately, the preceding method does not ensure a constant thickness size for the boundary layer
and the number of element layers is not controlled. For specific applications, a thickness size and a
number of element layers are prescribed.

This is the case for the clay extrusion process [Abbad 2003]. Rheological and frictional tests show
that, above a particular stress threshold, the contact between the clay and the extrusion die becomes
frictionless. In fact, the water of the clay moves outwards, under pressure, which lubricates the extrusion.

Computations of such a process could employ classical frictionless contact conditions, as for the casting
process [Saez 2003]. However, a new treatment of the frictionless contact is proposed in this section. In
this approach, the extrusion concerns not only the clay, but also a thin water layer, whose viscosity η is
related to the thickness size e, so as to compute an equivalent friction coefficient α between the shear
stress τ and the wall velocity vwall. We obtain the following equivalent friction law

τ = α vwall (7.1)

where α =
η

e
(7.2)
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(a) symmetrical part (b) enlargement

Figure 7.15: Natural and monodomain mesh, with a boundary layer generated by a multidomain metric

(a) enlargement (symmetry plane on the left) (b) enlargement (entrance gate at the bottom)

Figure 7.16: The same mesh with new enlargements, so as to see the adiabatic effect



7.3. BOUNDARY LAYERS 129

The computation involves a subdomain for the clay and another subdomain for the water. Since the
extrusion die is initially full, the geometries of those subdomains are know a priori. The multidomain
metric can then be used, so as to build an anisotropic mesh (figure 7.17(a)), with a natural refinement in

(a) sectional view (b) enlargement

Figure 7.17: Extrusion die (100 mm diameter), with a 20 mm large exit gate and a 1 mm thick boundary
layer (83 863 nodes)

the clay subdomain, a natural refinement in the (thin) water subdomain and a high refinement between
both (figure 7.17(b)).

So as to define the clay subdomain geometry, CAD operations can be avoided by skinning progres-
sively the voxelization of the extrusion die, with the desired thickness size (except at the entrance and exit
gates). Such a skinning consist in removing external lit voxels. The resulting voxelization is then used
in the computation of the approximated characteristic function (filling ratio) of the clay (figure 7.18), on
the adapted mesh (the filling ratio of the water layer being its complement). Such a bidomain mesh has
a subdomain dedicated to the boundary layer.

The flow of both fluids can then be simulated, with an imposed pressure at the entrance gate (on
the left), while the exit gate has free boundary conditions (figure 7.19). In fact, for this computation, no
stress threshold has been taken into account, that is the reason why, in the dead zone of the die (on the
upper right corner), a back flow is observed (figure 7.20).
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(a) global view (boundary mesh and three cutting plane by trans-
parency)

(b) enlargement

Figure 7.18: Clay filling ratio: red elements are full, blue one are empty (full of water)
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Figure 7.19: Velocity field (arrows) and pressure field (color scale) on a symmetry plane

Figure 7.20: Velocity field (arrows) and clay filling ratio (color scale) with enlargement of the dead zone
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7.4 Mesh generation

Lastly, the multidomain metric can be used as a mesh generation technique, in other words, as an
alternative of chapiter 2 (page 19). Indeed, a mesh of a subdomain ω can be extracted from a global
mesh of a bounding box, adapted with a bidomain metric.

Let us take, for example, a subdomain ω representing the geometry of a biplane (figure 7.21), which is

Figure 7.21: A coarse mesh defining the subdomain geometry (this mesh is used for the voxelization)

symmetrical, if the airscrew is removed. This subdomain is then considered in a computational domain Ω,
whose geometry is simple and sufficiently large to contain the symmetrical part of ω (figure 7.22(a)). The
multidomain metric leads to a mesh of Ω that captures well the details of ω’s geometry (figure 7.22(c)).
The adaptive process is robust, since the initial mesh of Ω contains only 6 elements and the final mesh
has succeeded in refining around very small details (small with respect to Ω’s dimension).

The boundary of ω has been captured by the bidomain mesh of Ω. If we extract the sub-mesh of
elements whose filling ratio gω is greater (respectively lower) than 50%, we obtain a suitable mesh of ω
(respectively of Ω\ω, as we can see on figure 7.23). Unfortunately, the boundary of those sub-meshes is
quite noisy (figure 7.24(a)).

This noise can be reduced by cutting the partially filled elements, by the 50% levelset of gω after a
P 1 averaging. Cut elements should then be triangulated, so as to get a simplicial mesh. It would lead to
a smoother boundary (figure 7.24(b)), but element quality is sure to be deteriorated.
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(a) global view

(b) enlargement of the symmetry plane

(c) enlargement of the biplane

Figure 7.22: Bidomain mesh obtained for the biplane
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(a) global view

(b) enlargement of the biplane

(c) enlargement with another point of view

Figure 7.23: Boundary mesh of Ω\ω, seen from the inside



7.4. MESH GENERATION 135

(a) Extracted sub-mesh

(b) 50% levelset of the filling ratio after a P 1 averaging

Figure 7.24: A noisy boundary obtained by element extraction and a smoother levelset

Furthermore, if the voxelization of ω relies only on a mesh of ω’s boundary (currently, this is not the
case, a mesh of ω itself is required), then a new technique of mesh generation could be derived from the
anisotropic adaption to a multidomain metric. Such a technique would present several advantages:

• the boundary ∂ω could be connective or not (currently, the mesh generation by topological opti-
mization needs the connectivity of the boundary mesh)

• a mesh of Ω\ω could be built from separated CAD of Ω and ω

• a partial mesh of ω (a symmetry part for example) could be built by choosing Ω adequately

• small details (under a certain mesh size threshold) of ω could be removed

• depending on the voxelization algorithm, some errors in the mesh of ∂ω could be repaired.

In fact, many CAD operations could be saved, with such a technique.
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At the beginning of this work, in 2001, anisotropic meshes were very appealing for their computational
time saving. However, they were merely used in 2D, because of several reasons:

• in 3D, adaption techniques were recent and not widespread

• in 3D, only analytical metrics or metrics defined by the anisotropy of already computed fields, were
available, which was not convenient for all mesh requirements.

Nowadays, anisotropic mesh adaption in 3D is operational. In particular, thanks to the work presented
here:

• anisotropic adaption by topological optimization has been established in all spatial dimensions
(including 2D, 3D and 4D)

• automatic metric building, before finite element computation, has made Rem3D end users enthusi-
ast about 3D anisotropic meshes.

After a summarize of the results exposed in this document (next section), the future works arising
from these progresses are listed in the last section.

Summarize

In the framework of injection molding simulation, industrial plastic parts are usually thin, with some
massive zones. For that reason, a 3D simulation tool has been developed, so as to fill the gap of Hele-
Shaw approaches. However, treating thin zones with a 3D solver requires the use of anisotropic meshes
(isotropic ones would be too much expensive), with enough element layers through the thickness.

Anisotropic adaption

So as to treat complex industrial parts, a robust mesh adaption method, driven by a metric field,
has been established. This method is based on topological optimization, whose goal is to improve an
anisotropic quality criterion.

The robustness of this anisotropic adaption comes from the optimization strategy adopted. On one
hand, mesh operations are purely topological, so, they are less exposed to numerical roundoff errors than
geometrical operations. On the other hand, the use of an anisotropic size criterion, in conjunction with
an anisotropic shape criterion, and the use of an averaged mesh size (contrary to an element diameter)
are important ingredients of the method efficiency.

The overall algorithm gives good results, both in 2D and 3D, in what concerns the conformity between
an adapted mesh and the metric field used in its adaption process.

Natural and multidomain metrics

Efforts have then mainly been spent on the elaboration of an a priori metric field that is able, not only
to introduce several element layers through the thickness for a thin and curved geometry (figure 7.25(a)),
but also to refine a mesh around internal discontinuity surfaces, in the multidomain framework (fig-
ure 7.25(b)).

In order to introduce several element layers through the thickness of a given geometry, whatever its
complexity may be, a natural metric field is proposed. The natural metric detects automatically the local
anisotropy and the curvature of a geometry, by proceeding as follows on each node of its mesh:

• aggregation of mesh elements around the node, so as to select the concerned zone
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(a) natural mesh of the lens

(b) bidomain mesh of the lens and its mold (c) sectional view of the bidomain mesh

Figure 7.25: Quarter of an optical lens and its surrounding mold (courtesy of Essilor)

• elliptic interpolation of this aggregation, via a new technique based on orientation tensors.

The obtained metric is then selectively divided, so as to impose a relevant mesh size through the thick-
ness. The coupling between metric generation and mesh adaption is iterated and leads to a suitable mesh
for the Rem3D computation (monodomain case).

Besides, for a simulation involving several bodies in interaction, the mesh must correctly represents
the computational subdomains (multidomain case). For that purpose, the natural metric is enriched
by an additional tensor dedicated to refining the mesh around interfaces between subdomains. This
additional tensor is computed by:

• voxelization of each subdomain, so as to interpolate its characteristic function

• gradient computation of this interpolation and tensorial product, in order to obtain a tensor.

This multidomain metric leads to an adapted mesh that reduces deeply the diffusion of characteristic
function interpolations. In fact, the adapted mesh is refined where strong gradients take place. Thus,
the multidomain metric is useful for an Eulerian, a Lagrangian or even an ALE formulation.

This metric can also be employed as a new boundary layer treatment, which could help the natural
metric around crossing zones or where the thickness changes suddenly. Another boundary layer treat-
ment (with a prescribed thickness) can be derived by considering a lubricant subdomain, whose material
behavior can model the macroscopic friction behavior.

As far as we know, the natural metric and the multidomain metric are thought to be new ap-
proaches. In the literature, only 2D metrics are computed a priori, for boundary layer treatment
[Castro-Dı́az et al. 1996, Castro-Dı́az et al. 1997].
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A posteriori metrics

Unfortunately, a mesh generated by adaption to a priori metrics is not always suitable during all the
simulation. Some developments have thus been devoted to a feasibility study of an a posteriori mesh
adaption, still driven by a metric field.

The natural metric can be improved a posteriori, after a first computation, with a relevant field out-
put. Such a simulation can be the solving of a stationary and linear Stokes problem, for a filled cavity,
under an imposed entrance pressure and a zero exit pressure. Then, the anisotropy of a relevant scalar
field output (the acceleration norm, for instance) is taken into account, not through its Hessian matrix
but rather through its gradient vector, squared by a tensorial product.

Another way to improve the natural metric consists in smoothing an error indication on the mesh.
Such a smoothing leads to a local multiplicative factor for the natural metric, so that the initial anisotropy
is preserved, the mesh being locally coarsen of refined. Furthermore, an a posteriori error estimator on an
anisotropic mesh, which is beyond the scope of this work, would help in the local anisotropy improvement.

Industrial applications

In practice, this work has been implemented as a new pre-treatment tool, devoted to the metric
generation for anisotropic mesh adaption. Major functionalities of this tools are already used in an
industrial framework. Mesh generation for Rem3D is really simplified for the end users: the meshing
stage is less time consuming (with respect to the equation solving stage) and multidomain tasks, like the
crucial thermal coupling for injection molding, are easier to use.

Mathematical contributions

From a mathematical point of view, some results have been established. The most important are:

• the minimal volume theorem, which is now proved without the orientation assumption (page 28)

• the elliptic interpolation raises a semi-definite programming problem that can be expressed by a
Fourier series on the unit sphere (page 63)

• the Hessian matrix can be non elliptic, which could be advantageously replaced by the gradient
operator, squared by a tensorial product (page 104).

Other minor results have been proved for all spatial dimensions, which enables the implementation
for all spatial dimensions and its verification in 2D, 3D and 4D. 4D tests are thought to be new, in what
concerns unstructured meshes.

Furthermore, some results relies on Riemannian geometry notions, employed in a discrete frame-
work. However, this approach should be distinguished from the, so called, discrete Riemannian geometry
[Dimakis and Müller-Hoissen 1999].

Publications

Mathematical developments have been published in [Gruau and Coupez 2003] (without proofs), in
[Gruau and Coupez 2005] (with proofs) and in [Gruau and Coupez 2004] (French translation). Rem3D
applications have been evoked in [Silva et al. 2003] and further detailed in [Silva et al. 2004] and in
[Coupez et al. 2004].
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Future work

In this section, a brief review of the remaining technical questions and research fields is drawn.

Technical developments

The natural metric implementation is quite complex and a question arises of whether the results
presented here would be reproducible within another framework (involving another mesh technology).
The answer is not straightforward, since many parameters have been tuned, according to our specific
framework.

Besides, parallelization of the metric computation is required, since meshes with 10 or 100 million
nodes have to be treated on computer clusters. In what concerns the multidomain metric and a posteriori
metrics, there is no theoretical limitations for the parallelization. However, in what concerns the natural
metric, the local anisotropy detection around each node would lead to many expensive communications
between mesh partitions.

Furthermore, the metric generation tool and the mesh generator (used in the adaption mode) could
be more strongly coupled during the iterative anisotropic adaption process. It would solve the memory
allocation problem for the future adapted mesh and a convergence criterion could be used, in order to
automatically stop the process when a suitable mesh is attained.

Natural metric

The natural metric computation is quite expensive, since all the work of local anisotropy detection
is lost from one iteration to another. A good speedup could be reached by a metric transport technique
from one mesh to another.

Besides, other techniques could be tested for the local anisotropy detection. In particular, the use of
a signed distance to the boundary could give good results.

Voxelization

Our uniform and isotropic voxelization technique is also quite expensive (in memory and in time).
A tree approach could save a lot of memory and could enable a better accuracy (around the bound-
ary, for example). Preliminary tests in 3D by [Henry 2004] (octree) show promising results in this field.
But many implementation difficulties arise, especially when a spatial dimension independence is required.

Another expected improvement would be the possibility to perform the voxelization of a subdomain,
only from a mesh of its boundary. After the boundary voxels are lit, other voxels could be scan so as
to lighten those inside the region delimited by previously lit voxels. It would be time saving and would
lead to a new mesh generation process for the subdomain (based on a bidomain anisotropic adaption in
a bounding box).

Such a voxelization technique could also be used with an analytical description of the subdomain.

Dynamic adaptivity

The work presented here is used to build a suitable mesh at the beginning of a simulation. However,
remeshing can be compulsory, especially with a Lagrangian formulation in finite strains. The remeshing
during the simulation needs a transport of the natural and multidomain metrics:

• from one deformed configuration to another: a tensorial transport solver is required (ALE formu-
lation)

• and from one mesh to another: a conservative metric re-interpolation method is required.
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4D meshes

Our implementation is dimension independent (including its use in 4D), but a 4D mesh asks some
questions. Firstly, how could it be visualized? Animated cutting hyperplanes are a solution, but a pen-
tatope cut by a 3D hyperplane gives numerous configurations.

Secondly, how the boundary mesh can be built? (such a boundary is composed of tetrahedra). With
an Eulerian (or ALE) formulation, the boundary of the mesh at the initial time step can be extruded (in
time), until the final time step. This mesh could then be completed by the 3D initial mesh and the 3D
final mesh (usually, there are identical for Rem3D).

Once the boundary mesh is built, the topological mesh generator can produce a first 4D mesh. Fur-
thermore, this mesh can be adapted, according to a 4D metric, so as to obtain a suitable mesh. The
most critical stage in this process concerns the natural metric: the thickness size in the time direction
(with is already known) can disturb the local anisotropy detection in the space directions. In fact, the
computation of a 3D natural metric in a 4D mesh is required (this metric being completed in the 4-th
dimension by a time mesh size, which can even be heterogeneous).

In what concerns the multidomain metric, its use in 4D is straightforward. Such a metric could
delimitates a subdomain whose position evolution in time is known. This is the case, for instance, of an
extrusion screw in its tube. The 4D mesh can then be automatically refined around moving interfaces.
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Appendix A

Complements on meshes and metrics

Several properties about metrics, simplices and meshes, although useful for implementing the tech-
niques described previously, are not required at the first reading. They are grouped in this appendix.

A.1 Metric

In what concerns metrics, few properties have not been evoked yet. In particular, plotting the unit
ball of a metric, obtaining a metric from a tensor x⊗ x and operating arithmetics on metrics.

A.1.1 Conic and parametrization

The unit ball of a metric M of Rd (which is defined by: all points x ∈ Rd such that ‖x‖M = 1) is an
non degenerated elliptic conic.

In 2D, the unit ball of a metric M is an ellipse, which can be plotted by considering the following
parametrization

θ → M−1/2

(
cos(θ)
sin(θ)

)
where θ ∈]− π; π] (A.1)

In 3D, the unit ball of a metric M is an ellipsoid, which can be plotted by considering the following
parametrization

(θ, φ) → M−1/2

 cos(θ) cos(φ)
sin(θ) cos(φ)

sin(φ)

 where θ ∈]− π; π] and φ ∈]− π/2; π/2] (A.2)

A.1.2 Tensorial product

So as to generate metrics, we intensively use tensors like x ⊗ x. However, such a square matrix,
although real and symmetrical, is not a metric.

Proposition A.1 let d > 1 and x 6= 0 ∈ Rd, then eigenvalues of x⊗ x are 0, with multiplicity d-1, and
‖x‖2, whose eigenvector is x.

Thus, x⊗ x is not definite positive, but only semi-definite positive.

Proof : since x⊗ x is symmetrical, it can diagonalized. Firstly, let us prove that ‖x‖2 is an eigenvalue
of x ⊗ x, with eigenvector x: we have x ⊗ x = xx>, so, (x ⊗ x)x = (xx>)x = x(x>x) = x‖x‖2, since
x>x = ‖x‖2.

Secondly, let λ 6= 0 be an eigenvalue of x⊗x and let us prove that λ = ‖x‖2
2: we denote by u 6= 0 ∈ Rd

a vector such that (x⊗ x)u = λu; since (x⊗ x)u = x(x>u), it comes x(x>u) = λu and since λ 6= 0 and

147
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x>u is a scalar, we have x>u 6= 0. Thus, x and u are collinear. But, x and u are eigenvectors of x ⊗ x,
so, the only possibility for x and u to be collinear, is to be equal. In other words, λ = ‖x‖2

2. Thus, when
d > 2, 0 is the only eigenvalue of x⊗ x distinct from ‖x‖2

2.

Thirdly, when d > 2, let us prove that eigenvectors of the eigenvalue 0 are orthogonal to x: let u 6= 0
be such that x>u = 0, we have (x ⊗ x)u = x(x>u) = 0, so, u is an eigenvector of 0. For dimensional
reasons, this inclusion is enough to prove that the orthogonal space of x (which has a dimension of d− 1)
is the space of all eigenvectors of 0. �

In fact, if we add a metric to the tensor x⊗x, then we still have a metric. Furthermore, if we make a
sum of tensors

∑
i

xi⊗xi, where d vectors xi are linearly independent, then there is no more eigenvector

for the eigenvalue 0, so,
∑

i

xi ⊗ xi is a metric.

A.1.3 Operators between metrics

So as to illustrate arithmetical operation between two metrics, we consider the following metrics
(there unit balls are in dotted lines on the following figures)

M1 = R
(
− π

32

)( 1 0
0 1000

)
R
(
− π

32

)>
(A.3)

and M2 = R
( π

16

)( 1
2 0
0 1000

)
R
( π

16

)>
(A.4)

where R(θ) =
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)
(A.5)

A.1.3.1 Several averaged values

When several metrics are given at the same point, we often need to compute one metric that has
averaged characteristics of the initial metrics. Those initial metrics may have different weights, but
this case has not been encountered, in this work. That is the reason why we focus our attention on
non weighted averages. Formula are given for two metrics, the generalization to n metrics can be done
straight away.

−1 −0.5 0 0.5 1

−0.2

−0.1

0

0.1

0.2

Figure A.1: Classical averages between two metrics

The averaged metric
M1 + M2

2
is easy to compute (no diagonalization, no matrix inversion). Unfor-

tunately, this average between two metric looses the stretching of initial metrics (figure A.1).

In fact, the unit ball of
M1 + M2

2
passes through the intersection points of of initial unit balls of M1
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and M2. Indeed, if we have ‖x‖M1 = 1 = ‖x‖M2 , then

‖x‖M1+M2
2

= x>
(

M1 + M2

2

)
x = x>

(
M1x + M2x

2

)
(A.6)

=
(

x>M1x + x>M2x

2

)
=
‖x‖M1 + ‖x‖M2

2
= 1 (A.7)

However, the topological mesh generator uses this operator between metrics, for convergence reasons
(see section 3.2.2 page 42).
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(a) p = −1
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(b) p = −1/2
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(c) p = 1/2

Figure A.2: Lp average of two metrics

Among all averages defined by (
Mp

1 + Mp
2

2

)1/p

(A.8)

where p 6= 0 ∈ R, the particular values p = −1, p = −1/2 and p = 1/2 can be tested (figure A.2).
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The metric obtained with p = −1/2 preserves quite well the stretching of initial metrics and its
eigenvectors are in the middle of initial eigenvectors (figure A.2(b)). This is the most interesting average
operator for interpolation. Furthermore, p = −1/2 corresponds to the classical average operation between
mesh sizes, since M−1/2 has the dimension of a length. Unfortunately, the computation of M−1/2 in-
volves the diagonalization of M . Besides, numerical tests performed with the topological mesh generator
(section 3.2.2 page 42) show surprisingly that p = −1/2 give worse results than p = 1.

A.1.3.2 Intersection

Sometimes, a metric with small mesh sizes is needed, so as to refine a mesh at locations where differ-
ent metrics are provided. This is the case for the multidomain metric around triple points (section 6.2.3
page 106).

Intersection of two metrics has been investigated by [Castro-Dı́az et al. 1996, Castro-Dı́az et al. 1997,
Mohammadi et al. 2000]. The (difficult) problem is to find the metric whose unit ball is the greatest one
included in the unit ball of M1 = V1D1V

>
1 (in this diagonalization, the diagonal D1 may not be composed

of eigenvalues) and included in the unit ball of M2 = V2D2V
>
2 (in this diagonalization, the diagonal D2

may not be composed of eigenvalues).

Simultaneous diagonalization consists in diagonalizing V >
1 M2V1 = V D2V

> (then we have M2 =
V1V D2V

>V >
1 , that is, V2 = V1V ) and we way have also M1 = V1V D1V

>V >
1 . In this case, we could take

M1 ∩M2 = V1V max(D1, D2)V >V >
1 .

An approximated intersection to obtain a metric whose unit ball is more or less included in those of
M1 and those of M2 (figure A.3) can be computed by

M1 ∩M2 =
V1D̂1V

>
1 + V2D̂2V

>
2

2
(A.9)

where D̂1 is the diagonal matrix whose coefficients are

λ̂j
1 = max

(
λj

1, V j>
1 M2 V j

1

)
(A.10)

and for D̂2

λ̂j
2 = max

(
λj

2, V j>
2 M1 V j

2

)
(A.11)
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Figure A.3: Approximated intersection between two metrics

The metric (A.9) provides a fair approximation of the intersection. In practice, it can be used when
the following relationship has to be enforced

∀x ∈ R ‖x‖M1∩M2 > max (‖x‖M1 , ‖x‖M2) (A.12)
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Unfortunately, this is not an associative operator (in other words, (M1∩M2)∩M3 6= M1∩(M2∩M3))
and formula (A.9-A.11) are much more expensive that the following operator, which gives sufficiently
good results, for our purpose.

The (coefficient by coefficient) maximal metric is defined by

M ij
max = max

(
M ij

1 ,M ij
2

)
(A.13)
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Figure A.4: Maximal metric

According to this operator, stretching of initial metrics is rapidly lost and the result tends to be
isotropic (figure A.4). Since then, bad eigenvectors do not matter. In practice, this (mathematically bad)
operator is very useful when an isotropic transition zone is needed between two contradictory metrics.

A.1.4 Analytical metrics

When the part geometry is simple, that is, Cartesian, cylindrical or spherical, then a continuous metric
field can be computed analytically, so as to introduce several element layers through the thickness.

A.1.4.1 Cartesian metric

Let Ω be an orthogonal parallelotope of Rd (a rectangle is an orthogonal parallelotope of R2 and a
parallelepiped is an orthogonal parallelotope of R3), which can be not aligned with Cartesian axes. In
other words

Ω = R(I1 × · · · × Id) (A.14)

where R is a rotation matrix (whose columns are the axes of Ω), × is the Cartesian product and (Ii)16i6d

is a set of segments of R (closed and non degenerated).

So as to impose the mesh size hi in the i-th axis of Ω, the following constant metric is employed

M(x) = M = R


1
h2

1

0

. . .

0
1
h2

d

R> (A.15)

This metric can be used to triangulate a plate with anisotropic elements (figure A.5). With such a
Cartesian metric, the metric field is homogeneous, so, we are in the Euclidian framework.
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Figure A.5: Mesh of a plate with a Cartesian metric

A.1.4.2 Cylindrical metric

This section is restricted to the 3D case. Let Ω be a cylindrical domain of R3, with axis (O, ~w), where
O has coordinates (x0, y0, z0). Let ~u and ~v be vector of R3, such that the base (~u, ~v, ~w) is orthogonal,
unitary and directly oriented (such a base exists). In this base, cylindrical coordinates (r, θ, z) can be
used. We denote by hr, hθ and hz the mesh sizes to be imposed, respectively in directions r, θ and z.

Let R1 be the rotation whose columns are (~u~v ~w). This rotation transforms the domain to a cylinder
with axis (Oz). At any point P ∈ R3, whose coordinates are (x, y, z), is associated a point P ′ =
R>

1 (P −O), with coordinates (x′, y′, z′). Eigenvectors of the desired metric in P ′ are (~er, ~eθ, ~ez), so, the
cylindrical metric in P is

M(x, y, z) = R1R2(x, y, z)


1
h2

r

0 0

0
1
h2

θ

0

0 0
1
h2

z

R>
2 (x, y, z)R>

1 (A.16)

where R2(x, y, z) = (~er ~eθ ~ez) =


x′√

x′2 + y′2
−y′√

x′2 + y′2
0

y′√
x′2 + y′2

x′√
x′2 + y′2

0

0 0 1

 (A.17)

and (x′, y′ z′) = R>
1 (x− x0, y − y0, z − z0) (A.18)

This cylindrical metric makes it possible to triangulate et full cylinder or a thick tube by anisotropic
elements (figure A.6). We remark that along axis (O, ~w), the cylindrical metric is not defined. However,
it can be extended by

M(x, y, z) = R1


1
h2

r

0 0

0
1
h2

r

0

0 0
1
h2

z

R>
1 (A.19)
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Figure A.6: Thick tube mesh obtained with a cylindrical metric

where we have
√

x′2 + y′2 = 0. This cylindrical metric is heterogeneous and sufficiently regular to be
Riemannian (except along the axis (O, ~w)).
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A.1.4.3 Spherical metric

Still in the 3D case, we consider a spherical domain Ω of R3, with center O, whose coordinates are
(x0, y0, z0). Contrary to the cylindrical case, we can stay in the canonical axes (no preliminary rotation
is required). We work in spherical coordinates (r, θ, φ), with O as the origin (a translation is needed).
We denote by hr, hθ and hφ the mesh sizes to be imposed, respectively in the directions r, θ and φ.

Eigenvectors of the desired metric at a point (x, y, z) are (~er, ~eθ, ~eφ), so, the spherical metric is

M(x, y, z) = R(x, y, z)



1
h2

r

0 0

0
1
h2

θ

0

0 0
1
h2

φ

R>(x, y, z) (A.20)

where R(x, y, z) = (~er ~eθ ~eφ) (A.21)

=



x′√
x′2 + y′2 + z′2

−y′√
x′2 + y′2

−x′z′√
x′2 + y′2

√
x′2 + y′2 + z′2

y′√
x′2 + y′2 + z′2

x′√
x′2 + y′2

−y′z′√
x′2 + y′2

√
x′2 + y′2 + z′2

z′√
x′2 + y′2 + z′2

0

√
x′2 + y′2√

x′2 + y′2 + z′2


(A.22)

and (x′, y′ z′) = (x− x0, y − y0, z − z0) (A.23)

This spherical metric can drive the triangulation of any spherical part (figure A.7). We remark that
at point O, the spherical metric is not defined. However, it can be easily extended by

M(O) =


1
h2

r

0 0

0
1
h2

r

0

0 0
1
h2

r

 (A.24)

In 2D, we can defined the polar metric

M(x, y) = R(x, y)


1
h2

r

0

0
1
h2

θ

R>(x, y) (A.25)

where R(x, y) = (~er, ~eθ) =


x′√

x′2 + y′2
−y′√

x′2 + y′2

y′√
x′2 + y′2

x′√
x′2 + y′2

 (A.26)

and (x′, y′) = (x− x0, y − y0) (A.27)

with is extended in the same way at point O. Again, the spherical metric and the polar metric are
heterogeneous and sufficiently regular to be Riemannian (except at point O).
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Figure A.7: Mesh of a lens with a spherical metric (courtesy of Essilor)

A.2 Simplex

In what concerns a d-simplex in Rd (k = d), we need to compute its outgoing normals from the
coordinates of its vertices. For that purpose, a study on the effect of a circular vertex permutation on
orientation is necessary. Besides, we need an algorithm to construct an equilateral d-simplex, whatever
dimension d.

A.2.1 Orientation

Definition A.1 The numbering S0, . . . , Sd of a d-simplex vertices is said to be well orentied when

det (S0S1, . . . , S0Sd) > 0 (A.28)

and ill oriented, otherwise.

Let us now have a look on the effect of a circular vertex permutation on the orientation.

Proposition A.2 let T be a non degenerated d-simplex of Rd (where d > 2) and let S0, . . . , Sd be a
well oriented numbering of its vertices. A new numbering Si, . . . , Sd, S0, . . . , Si−1 obtained by a circular
permutation is

• always well oriented, when d is even

• alternatively well and ill oriented, when d is odd.

because

det (SiSi+1, . . . , SiSd, SiS0, . . . , SiSi−1) = (−1)d∗i det (S0S1, . . . , S0Sd) (A.29)

In other words, in 2D and in 4D, a circular permutation on vertices has no effect on orientation.
Conversely, in 3D, the orientation changes after each single (i = 1) circular permutation on vertices.
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Proof : let us prove that

det (Si+1Si+2, . . . , Si+1Sd, Si+1S0, . . . , Si+1Si) = (−1)d det (SiSi+1, . . . , SiSd, SiS0, . . . , SiSi−1) (A.30)

We have

Si+1Si+2 = SiSi+2 + Si+1Si
...

...
...

Si+1Si−1 = SiSi−1 + Si+1Si

Si+1Si = Si+1Si

(A.31)

so, it comes

(Si+1Si+2, . . . , Si+1Sd, Si+1S0, . . . , Si+1Si) =


−1 1 0
...

. . .
... 0 1
−1 0 . . . 0

 (SiSi+1, . . . , SiSd, SiS0, . . . , SiSi−1)

According to the last row, we obtain

det


−1 1 0
...

. . .
... 0 1
−1 0 . . . 0

 = (−1)d (A.32)

which gives (A.30) and by iterating on i, (A.29) is obtained. �

A.2.2 Outgoing normal vector

We can now apply the previous result to outgoing normal computation.

Definition A.2 let T be a non degenerated d-simplex of Rd and let F be a face of T . We denote by H
the hyperplane of Rd spanned by F and we denote by H− the semi space of Rd delimited by H and not
containing T (figure A.8) :

• the outgoing normal of F for T is the unitary vector ~n that is orthogonal to H and pointing to H−

• the ingoing normal is the other unitary vector that is orthogonal to H.

 −H

n

H

F

T

Figure A.8: Outgoing normal
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Proposition A.3 let T be a non degenerated d-simplex of Rd (where d > 2) and let S0, . . . , Sd be a well
oriented numbering of its vertices. Let F be a face of T and let i be such that F is the opposite face of
vertex Si. Then Si+1, . . . , Sd, S0, . . . , Si−1 is another numbering of vertices of F and the outgoing normal
of F for T is

~n =
(−1)d∗i

|F |
Si+1Si+2 ∧ . . . ∧ Si+1Sd ∧ Si+1S0 ∧ . . . ∧ Si+1Si−1 (A.33)

In other words, the outgoing normal computation can be achieved by vectorial products and face
measurement. In addition, when d and i are odd, the opposite result has to be considered.

Proof : firstly, using the vectorial product definition, we know that the following vector

Si+1Si+2 ∧ . . . ∧ Si+1Sd ∧ Si+1S0 ∧ . . . ∧ Si+1Si−1 (A.34)

is orthogonal to all vectors Si+1Si+2, . . . , Si+1Sd, Si+1S0, . . . , Si+1Si−1 (so, this vector is orthogonal to
F ). Besides, property 1.2 page 13 says that |F | is the norm of this vector. So,

1
|F |

Si+1Si+2 ∧ . . . ∧ Si+1Sd ∧ Si+1S0 ∧ . . . ∧ Si+1Si−1 (A.35)

is a unitary normal vector.

Secondly, the vectorial product has the following property

det
(

Si+1Si+2, . . . , Si+1Sd, Si+1S0, . . . , Si+1Si−1,

Si+1Si+2 ∧ . . . ∧ Si+1Sd ∧ Si+1S0 ∧ . . . ∧ Si+1Si−1

)
> 0 (A.36)

in other words, when the numbering Si+1, . . . , Sd, S0, . . . , Si of vertices of T is well oriented, the following
normal

1
|F |

Si+1Si+2 ∧ . . . ∧ Si+1Sd ∧ Si+1S0 ∧ . . . ∧ Si+1Si−1 (A.37)

is ingoing. Using formulae (A.29), and multiplying this normal by (−1)d∗i is enough to always get an
outgoing normal. �

A.2.3 Equilateral simplex

Before we describe an algorithm to built an equilateral d-simplex of Rd, we need the following result
about its outer radius and is height.

Proposition A.4 the outer radius of an equilateral d-simplex whose size is h and its height are

radius(d, h) =

√
d

2(d + 1)
h (A.38)

height(d, h) =

√
d + 1
2 d

h (A.39)

For construction of an equilateral simplex, only (A.39) is needed. However, the proof of (A.39)
requires (A.38).
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Proof : let S0 . . . Sd be an equilateral simplex with size h. We denote by G its center and by H the
center of the face S1 . . . Sd (figure A.9).

S

0

1

3

2

x

S

S

S

x
G

H

Figure A.9: Equilateral tetrahedron (d = 3)

On one hand, we have

GS0 + . . . + GSd =
−→
0 (A.40)

on the other hand, we have

GS1 + . . . + GSd = d (GH) (A.41)

so

GS0 + d (GH) =
−→
0 (A.42)

which can we re-written as

(d + 1) (GS0) = d (HS0) (A.43)

thus, we obtain

‖GS0‖ =
d

d + 1
‖HS0‖ (A.44)

Since ‖GS0‖ is the outer radius and ‖HS0‖ is the height, it comes

radius(d, h) =
d

d + 1
height(d, h) (A.45)

We still have to prove recursively on d > 0 that

height(d, h) =

√
d + 1
2d

h (A.46)

• for d = 1, we have indeed height(1, h) = h

• for d > 1, in the triangle S0S1H that is orthogonal on H we have

S0H
2 + S1H

2 = S0S
2
1 (A.47)

in other words, we have

height(d, h)2 + radius(d− 1, h)2 = h2 (A.48)
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because the face S1 . . . Sd is an equilateral (d-1)-simplex with size h and with center H; according
to (A.45), we obtain

height(d, h)2 +
(

d− 1
d

)2

height(d− 1, h)2 = h2 (A.49)

By assumption, we have

height(d− 1, h)2 =
d

2(d− 1)
h2 (A.50)

So, it comes

height(d, h)2 = h2

(
1−

(
d− 1

d

)2 d

2(d− 1)

)
(A.51)

= h2

(
1− d− 1

2d

)
(A.52)

= h2

(
d + 1
2d

)
(A.53)

Conclusion: (A.46) is true for all d > 0. �

We are now able to construct recursively an equilateral d-simplex of Rd with size h, denoted by T 0.
The vertices of T 0 are:

• if d = 0, then S0 = O, the origin

• if d > 0, then:

– we build an equilateral (d-1)-simplex S0 . . . Sd−1, with size h in the hyperplane xd = 0

– then, the d coordinates of Sd corresponds to those of the center of S0, . . . , Sd−1 in what
concerns the first (d-1) coordinates and by

height(d, h) =

√
d + 1
2d

h (A.54)

for the last coordinate.

Next, so as to normalize the shape criterion (3.1) page 39, the measure of a equilateral simplex is
required.

Proposition A.5 the measure of an equilateral d-simplex, with size h, is

measure(d, h) =
√

d + 1
d! 2d/2

hd (A.55)

Proof : thanks to the previous construction algorithm, we can build T 0 an equilateral d-simplex with
size h, whose first vertex is the origin O and whose edge vectors from O compose an upper triangular
matrix. The i-th diagonal coefficient of this matrix is√

i + 1
2i

h (A.56)
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Since the determinant of this upper triangular matrix is equal to the product of its diagonal coefficients,
it comes, with property 1.2 page 13, that the measure of T 0 is

measure(d, h) =
1
d!

d∏
i=1

(√
i + 1
2i

h

)
(A.57)

=
1

d!
√

2
d

d∏
i=1

(√
i + 1

i

)
hd (A.58)

(A.59)

and we remark that

d∏
i=1

(√
i + 1

i

)
=

√
d + 1 (A.60)

which leads to (A.55). �

Since the shape criterion (3.1) must be equal to 1 for any equilateral simplex, the normalization factor
c0 (3.5) is

c0 = measure(d, 1)−1 =
d!√
d + 1

2d/2 (A.61)

A.3 Mesh

In what concerns meshes, major properties have already been enunciated in chapter 1. However, two
essential algorithms are depicted in this section. We consider a simplicial mesh (T ,S), whose topological
dimension is D (that is to say that each element has D vertices) and we assume that boundary faces are
connected to a fictitious node 0 (see page 33).

A.3.1 Reverse topology

An indispensable information to know about a mesh is its reverse topology, which is, for each node
S of the mesh, the set of elements whose S is a vertex.

Algorithm A.1 an efficient way to compute the reverse topology is as follows:

– to allocate an array T ′, with the same size of the array T
(the latter describing the vertices of each elements)

– to scan a first time the array T , so as to increment,
for each node S, the number of elements, whose S is a vertex

– to space out the array T ′ between all nodes (by pointers),
so that each node has enough space for its elements

– to scan again T , so as to fill T ′ like that: for each element T ,
add the numbering of T in the array T ′ for each vertex of T .

The array T ′ is accompanied by two other arrays:

• T ′′ indicating for each node the first empty space in T ′ ready for that node

• and T ′′′ specifying for each node the number of its elements.
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In fact, the array T ′′′ is not necessary, if we fill T ′ like that:

• each element appears D times in T ′, so, we could decide that the i-th entry in T ′ is tacitely
attributed to element i/D (integer division)

• the we could fill T ′ by a compact chained list for each node describing successively the elements of
that node.

The array T ′′ is still useful, so as to know where each chain list starts.

A.3.2 Neighborhood

When the reverse topology is known, the neighborhood can be easily computed. The neighborhood
is the description, for each node S, of the other nodes connected to S by an edge.

Algorithm A.2 an acceptable way to compute the neighborhood is as follows:

for each node S do
– allocate an empty node set V(S) (whose size is unknown)
for each element whose S is a vertex (thanks to the reverse topology) do

– add to V(S) the other vertices of this element (except node 0 and node S itself),
without considering if those vertices are already present in V(S)

done
– sort V(S) and remove multiple items, so as to compact V(S)

done

Again two additional arrays are needed to access V(S) and to know the size of V(S).

A.3.3 4D mesh

As annunciated in section 2.3 page 34, the topological mesh generator has been tested successfully in
4D. Contrary to [Takahashi et al. 2001], this is not a tetrahedral morphing test in 4D, but instead, the
generated mesh is directly composed of pentatopes (simplices with 5 vertices) in 4D. Unfortunately, no
visualization tool is available, at that time, for such 4D meshes. That is the reason why we reproduce
the node coordinates and the element vertices in two tables.

The geometry for this test case is simple:, the unitary hypercube [0, 1]4 of R4. The mesh of its
boundary is given table A.1, in the first columns on the left. This boundary mesh is composed of 48
tetrahedrons in R4.

The initial 4D mesh generated by topological optimization is given on table A.1, in the last columns
on the right. This mesh is composed of 36 pentatopes in R4 (virtual elements connected to node 0 have
been omitted).

Then, the topological mesh generator has been asked to adapt the initial mesh to a uniform mesh
size of h = 1/3. The obtained result is given on table A.2 (organized in two columns), in what concerns
the node coordinates and on the (long) table A.3 (organized in four columns), for the element vertices.
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boundary mesh of the hypercube mesh of the hypercube
coordinates vertices coordinates vertices

n◦ x y z t S0 S1 S2 S3 n◦ x y z t S0 S1 S2 S3 S4
1 0 0 0 0 8 4 2 1 1 0 0 0 0 12 16 10 9 8
2 1 0 0 0 8 2 6 1 2 1 0 0 0 16 14 10 9 8
3 0 1 0 0 8 3 4 1 3 0 1 0 0 16 12 11 9 8
4 1 1 0 0 8 7 3 1 4 1 1 0 0 15 16 11 9 8
5 0 0 1 0 8 6 5 1 5 0 0 1 0 14 16 13 9 8
6 1 0 1 0 8 5 7 1 6 1 0 1 0 16 15 13 9 8
7 0 1 1 0 16 12 10 9 7 0 1 1 0 1 14 10 2 8
8 1 1 1 0 16 10 14 9 8 1 1 1 0 14 1 6 2 8
9 0 0 0 1 16 11 12 9 9 0 0 0 1 14 1 10 9 8
10 1 0 0 1 16 15 11 9 10 1 0 0 1 1 14 13 9 8
11 0 1 0 1 16 14 13 9 11 0 1 0 1 1 14 6 5 8
12 1 1 0 1 16 13 15 9 12 1 1 0 1 14 1 13 5 8
13 0 0 1 1 14 10 2 1 13 0 0 1 1 16 12 4 3 8
14 1 0 1 1 14 2 6 1 14 1 0 1 1 12 16 11 3 8
15 0 1 1 1 14 9 10 1 15 0 1 1 1 16 15 11 3 8
16 1 1 1 1 14 13 9 1 16 1 1 1 1 15 16 7 3 8

14 6 5 1 1 12 4 2 8
14 5 13 1 12 1 10 2 8
16 12 4 3 12 1 4 3 8
16 4 8 3 1 12 11 3 8
16 11 12 3 1 12 10 9 8
16 15 11 3 12 1 11 9 8
16 8 7 3 14 16 6 5 8
16 7 15 3 16 15 7 5 8
12 4 2 1 16 14 13 5 8
12 2 10 1 15 16 13 5 8
12 3 4 1 1 15 11 9 8
12 11 3 1 15 1 13 9 8
12 10 9 1 15 1 11 3 8
12 9 11 1 1 15 7 3 8
16 8 6 5 1 15 13 5 8
16 6 14 5 15 1 7 5 8
16 7 8 5 16 12 10 2 8
16 15 7 5 14 16 10 2 8
16 14 13 5 12 16 4 2 8
16 13 15 5 16 14 6 2 8
15 11 9 1
15 9 13 1
15 3 11 1
15 7 3 1
15 13 5 1
15 5 7 1
16 12 10 2
16 10 14 2
16 4 12 2
16 8 4 2
16 14 6 2
16 6 8 2

Table A.1: Mesh of the boundary (left columns) and the interior mesh (right columns) of a 4D hypercube
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node coordinates node coordinates
(continued)

n◦ x y z t n◦ x y z t
1 0 0 0 0 64 0.238412764 0.747588156 0.572296788 0
2 1 0 0 0 65 0 0.5 0 1
3 0 1 0 0 66 1 0 0.5 1
4 1 1 0 0 67 1 0.5 0.5 1
5 0 0 1 0 68 0.5 0 0 0.75
6 1 0 1 0 69 0.749794363 0.727129555 0.290628173 0
7 0 1 1 0 70 0.309292119 0.257152317 0 0.2852347
8 1 1 1 0 71 0 1 0.5 1
9 0 0 0 1 72 1 0 0.5 0.5
10 1 0 0 1 73 0.541206858 0.516602146 0.531204268 0.467611401
11 0 1 0 1 74 0.5 1 0.5 1
12 1 1 0 1 75 1 0.25 1 0.25
13 0 0 1 1 76 0.760147031 0.699239584 0.799481968 0.620498157
14 1 0 1 1 77 0.697471817 0.271453177 0.712617094 1
15 0 1 1 1 78 0.76162513 0.319574892 0 0.72646316
16 1 1 1 1 79 0.713045567 0.459806611 0.327487295 1
17 0 0.5 0.5 0 80 1 1 0.5 1
18 0.750276169 0.297773469 0.73043163 0 81 1 0 0 0.5
19 0.28867662 0.712699919 0.580010421 0.433687703 82 0.5 0.5 1 1
20 0 0 0.5 0.5 83 0.5 0 1 1
21 0 0.5 0 0 84 0 0.5 1 1
22 0 0.5 0 0.5 85 0.223439868 0.239374171 0.792222364 0.498672813
23 0 0 0 0.5 86 1 0.701142063 0.375381304 0.218020022
24 0.5 0.5 0 0 87 0 0.231033385 0.233701762 0.695096453
25 0.5 0 0 0 88 0.740625 0.73515625 0.7125 0
26 0.5 0 0.5 0.5 89 0.5 1 1 1
27 0.5 0 0.5 0 90 0 0.707310606 0.80969697 0.454924242
28 0.739581304 0.313101613 0.657165844 0.397729472 91 0.510161497 0.426551756 0.387094158 0
29 1 0.301948958 0.306551199 0.296455287 92 0.5436897 0.537755857 0 0.433347673
30 0 1 0 0.5 93 0 1 1 0.5
31 0.719930251 0.216597401 0.255507862 0.475507326 94 1 0.701553669 0.264718734 0.757980553
32 0.5 0.875 0 0 95 1 0.5 1 0
33 0.629234088 0.292072788 0.703869024 0.748016775 96 0 0.268803177 0.225587612 0.330658079
34 0.250553316 0.752373755 0.284648284 1 97 0 0.75 1 0.5
35 1 0.5 0 0.5 98 1 0.5 0.5 0
36 0.746227674 0 0.704150129 0.292226185 99 1 0.5 0 0
37 0 1 0.5 0 100 0.56 0.22 1 0.34
38 0.418643219 0.44113343 1 0.55368645 101 0.5 1 0.5 0
39 1 0.549168841 0.608694759 0.595066241 102 1 0.5 0 1
40 0 0.75 0 0.25 103 0.5 0.5 1 0
41 0.5 1 0 1 104 0.25 1 0.75 0
42 1 0 0.5 0 105 0 0 1 0.5
43 0.324619951 0.798970558 0 0.497187136 106 0 0.5 0.75 1
44 0 1 0.5 0.5 107 0.260955901 0.460498534 1 0.258938731
45 0.570364201 0.652214425 0.609589062 0.796537949 108 0.610945279 1 0.418992519 0.639935385
46 1 0.307953573 0.269359105 0.714330537 109 0 0.720731061 0.755969697 0.795492424
47 0.5 1 1 0.5 110 0 0.5 1 0
48 0.702845919 0 0.301876606 0.277827313 111 1 1 0 0.5
49 1 1 1 0.5 112 0.280925028 0.253614754 0.768035168 1
50 1 0.5 1 0.5 113 0.5 0 1 0
51 0.25 0.473281831 0.773250717 0.801676322 114 0.5 0 1 0.5
52 1 1 0.5 0 115 0.300653265 0.68790133 0.300966502 0.352410691
53 0.25 0 0.722 0.778 116 0 0 0.5 0
54 1 1 0.5 0.5 117 1 0.350256 0.717008 0.284272
55 0.505975369 0.527090884 0.557146313 1 118 0.708589744 0.261188849 0 0.323575483
56 0.304966 0 0.254114 0.275689 119 0.5 1 0 0.25
57 0.75 1 0.75 0 120 0.5 1 0 0
58 0.74673443 0.768825575 0 0.65159046 121 0.5 1 1 0
59 0.261671607 0.311624497 0.67750696 0 122 0.278400763 0.274049298 0.238548231 0.332893359
60 0.5 0.5 0 1 123 0.490625 0.73515625 0.7125 0.25
61 0.5 0 0 1 124 0.429149923 0.351635154 0.333265388 0.710317801
62 0 0 0.5 1 125 1 0.5 1 1
63 0.5 0 0.5 1 126 0 0.446563661 0.546501434 0.603352645

Table A.2: Node coordinates of the 4D hypercube mesh, adapted to a mesh size of 1/3
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Table A.3: Pentatope vertices of the same mesh

element vertices element vertices element vertices element vertices
(continued) (continued) (continued)

S0 S1 S2 S3 S4 S0 S1 S2 S3 S4 S0 S1 S2 S3 S4 S0 S1 S2 S3 S4
124 39 66 33 31 32 44 115 101 108 54 123 47 76 88 35 99 24 91 69
69 4 98 86 52 105 113 85 26 20 14 28 33 39 66 23 68 122 25 56
45 47 89 16 74 60 45 58 108 12 83 82 33 50 38 68 23 122 26 56
83 63 33 26 14 108 45 74 60 12 85 5 105 113 110 108 41 58 60 12
28 85 33 26 100 104 44 47 101 64 125 14 33 50 39 48 72 28 36 26
124 68 66 61 10 93 97 15 90 47 71 45 126 19 34 54 16 80 108 39
124 43 60 34 108 45 47 108 16 76 45 12 80 79 74 68 31 48 26 56
84 109 15 90 47 28 103 38 50 88 69 4 54 86 35 123 54 69 101 108
18 48 27 91 26 124 78 10 46 31 85 5 105 110 20 66 81 72 46 31
33 14 125 67 39 92 4 69 35 54 88 123 38 76 73 124 10 66 46 31
124 68 60 78 10 124 39 35 46 31 88 28 98 39 91 122 25 68 118 31
18 48 28 91 29 76 47 38 123 88 48 18 27 36 26 79 124 60 78 10
122 59 126 20 85 18 36 113 26 100 78 79 102 46 35 23 20 122 26 56
41 108 74 60 12 4 111 58 108 54 35 92 124 39 58 25 2 31 81 118
20 23 9 87 124 104 103 47 101 121 88 8 54 76 39 62 126 124 65 106
43 124 115 34 108 45 19 115 34 108 91 19 115 101 64 45 126 38 112 73
1 56 27 91 25 1 122 20 17 59 22 122 126 17 96 47 44 71 19 90
19 45 126 115 34 71 93 15 90 47 103 123 47 38 64 31 28 26 91 48
44 19 71 34 108 25 56 31 68 48 49 16 54 76 39 29 69 39 86 35
33 45 125 76 39 29 2 31 81 48 94 102 58 79 35 25 122 31 91 118
19 115 69 91 73 108 41 11 43 119 65 63 55 61 124 103 104 47 7 121
36 18 117 28 100 110 7 64 107 103 56 59 27 91 26 97 93 7 90 47
49 8 50 76 39 92 31 39 91 73 23 122 68 25 70 2 25 31 81 48
17 40 115 21 22 19 59 126 91 38 108 92 124 60 58 59 56 27 91 1
1 122 21 17 96 73 122 92 124 115 78 81 35 118 31 20 23 122 26 124
12 45 80 108 74 28 48 31 91 29 92 115 69 91 32 24 32 115 21 91
31 92 122 91 73 61 55 124 79 63 105 113 85 107 100 17 40 115 44 3
123 19 38 91 64 44 17 126 19 90 69 29 99 86 35 122 23 1 25 70
108 11 44 43 119 88 18 98 95 117 20 87 9 62 124 66 81 10 68 31
115 19 69 108 73 73 85 122 26 124 31 122 26 91 73 35 79 94 39 58
48 18 28 36 29 18 103 95 117 6 84 51 126 38 109 124 65 126 22 34
19 44 115 101 64 7 47 64 107 103 32 40 115 43 22 71 44 126 22 34
107 97 105 90 110 17 32 115 64 91 18 117 28 36 29 45 55 82 125 77
62 126 13 112 106 92 115 122 91 73 71 108 44 11 34 79 35 124 39 58
28 88 38 91 103 122 59 26 91 85 47 45 89 71 74 73 124 115 92 108
116 1 59 56 20 122 73 126 124 115 59 56 27 20 26 59 122 126 91 85
47 45 82 38 109 87 65 22 23 124 44 104 47 7 64 16 45 80 67 55
2 35 31 91 29 38 47 64 107 90 88 8 50 76 47 81 29 72 46 31
88 8 98 86 39 85 28 26 91 73 19 59 126 90 17 88 28 38 91 73
2 35 99 91 118 35 2 99 91 29 40 17 115 44 22 16 54 76 108 39
45 33 125 76 82 92 108 39 124 73 122 92 68 22 124 56 48 31 91 26
44 101 37 3 64 88 69 98 86 52 113 105 85 107 110 32 69 115 92 108
27 116 59 56 20 47 7 64 107 90 32 108 58 4 119 47 45 108 16 74
13 38 82 112 84 122 23 68 22 70 103 59 100 107 38 54 123 47 101 108
85 20 33 112 124 44 47 64 19 90 14 83 33 77 125 4 69 99 86 35
85 28 38 91 100 55 45 124 106 34 33 28 73 76 39 67 79 94 12 80
18 98 42 91 29 123 88 38 91 73 20 63 62 112 53 65 71 126 22 34
88 123 38 91 103 21 122 24 22 70 63 20 33 112 53 31 28 33 26 66
90 84 126 38 109 108 45 124 60 34 123 19 69 91 73 35 92 24 91 118
76 82 33 50 125 55 45 74 60 34 71 65 11 22 34 45 55 77 125 67
103 18 95 117 88 8 49 50 76 47 86 69 39 54 35 32 44 3 101 64
18 98 28 91 88 42 36 117 29 72 122 87 20 23 96 59 38 64 107 90
18 113 27 36 26 68 124 66 31 10 54 111 58 108 12 84 47 82 38 109
4 92 69 108 54 24 122 118 25 91 59 19 126 91 17 18 98 42 117 6
40 17 115 21 3 51 84 82 106 112 43 124 60 22 92 38 105 97 107 90
12 45 60 79 74 13 53 105 112 62 19 71 44 108 47 35 2 31 81 29
31 92 39 91 35 126 19 38 91 73 19 71 45 108 34 124 65 60 55 34
50 33 125 76 39 81 78 10 46 35 126 85 105 112 84 35 2 31 91 118
1 122 59 56 20 18 48 28 36 26 44 115 126 22 34 2 25 31 91 118
126 122 20 17 96 122 126 124 87 20 45 71 126 90 109 16 49 54 76 47
19 45 47 76 38 45 79 124 60 55 29 2 72 42 48 103 18 28 117 100
110 59 64 107 90 48 18 42 91 29 44 71 11 22 34 92 4 69 108 32
65 87 126 62 124 55 45 74 106 89 43 44 11 34 108 92 58 39 54 35
87 122 22 23 96 66 33 124 26 63 92 73 69 108 54 109 84 82 89 106
48 18 28 91 26 38 88 50 76 47 41 108 58 60 43 81 25 31 68 48
72 14 28 36 26 101 88 121 103 47 40 32 115 21 22 59 110 85 107 90
71 109 15 89 47 28 14 50 39 117 101 88 91 69 123 104 44 37 7 64
8 88 98 95 117 82 76 33 50 38 43 124 60 92 108 103 28 38 50 100
109 71 15 90 47 126 85 38 112 73 19 45 73 126 38 32 44 115 3 64
69 4 99 86 98 84 109 82 89 47 32 3 44 101 119 108 45 124 39 58
31 28 72 26 48 88 8 54 57 47 24 92 69 91 32 88 28 98 18 117
69 4 99 24 35 59 122 1 91 17 123 19 73 76 108 78 79 124 35 46
103 123 91 101 64 122 17 1 21 91 44 19 115 17 64 103 88 121 95 47
68 124 31 78 10 45 60 58 79 12 54 94 58 111 12 38 59 85 107 90
20 85 126 112 124 82 83 13 38 112 35 79 94 102 46 39 124 66 33 79
122 59 126 91 17 44 17 115 3 64 13 84 126 106 112 108 32 58 43 119
88 101 54 69 123 59 103 100 91 38 47 38 97 107 90 79 45 124 60 58
88 8 98 39 117 122 92 91 118 31 108 92 39 54 73 103 59 64 91 38
45 73 108 124 115 5 116 59 113 20 18 48 42 36 29 4 69 92 24 35
68 63 9 61 124 36 14 117 6 100 108 71 74 11 34 55 45 82 89 106
93 44 7 90 47 94 54 58 35 39 35 92 124 78 31 68 63 66 26 124
81 78 68 118 31 2 48 42 91 29 73 45 126 124 115 45 55 80 79 67
59 110 64 17 90 122 21 24 1 70 45 55 74 106 34 103 18 113 91 100
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element vertices element vertices element vertices element vertices
(continued) (continued) (continued) (continued)

S0 S1 S2 S3 S4 S0 S1 S2 S3 S4 S0 S1 S2 S3 S4 S0 S1 S2 S3 S4
125 16 50 76 39 8 88 121 57 47 73 88 54 69 123 66 33 77 14 67
45 51 126 106 109 45 55 80 16 74 123 19 47 101 108 97 84 15 90 47
69 29 39 91 35 124 58 60 78 92 8 88 54 86 39 55 45 77 79 67
59 19 64 90 17 28 29 98 39 91 49 16 50 76 47 71 65 126 106 34
19 44 115 34 108 59 85 100 107 38 103 75 117 50 100 85 126 105 90 84
45 33 124 79 63 99 35 24 91 118 56 48 27 91 25 75 103 117 6 100
122 17 115 126 91 55 45 89 16 74 36 18 42 6 27 39 124 35 92 31
11 65 60 22 34 48 28 31 72 29 44 32 115 3 43 67 79 66 46 39
122 92 68 124 31 92 54 58 108 39 45 47 90 38 109 101 115 69 91 19
88 69 54 86 39 28 31 72 26 66 16 45 80 108 39 63 68 66 61 124
63 20 9 62 124 115 19 126 91 73 68 124 60 61 10 69 92 39 54 35
116 27 59 56 1 21 122 1 22 96 88 101 54 57 52 45 124 126 115 34
28 14 72 39 66 98 69 99 91 29 124 68 60 61 65 103 59 100 91 113
124 68 60 22 92 4 92 69 24 32 122 73 126 91 85 92 78 35 118 31
122 92 24 22 70 49 8 54 76 47 45 55 124 60 34 113 59 100 91 26
59 113 27 91 26 122 92 68 118 70 24 122 115 92 91 4 101 69 108 32
19 59 64 91 17 45 94 58 79 39 8 88 50 95 47 78 79 102 60 10
115 101 69 91 32 103 88 50 95 117 65 68 9 61 124 20 85 33 112 53
29 28 72 36 117 19 44 47 101 108 62 126 105 112 13 85 126 59 110 20
2 29 72 81 48 103 18 100 117 6 88 103 50 95 47 92 69 39 91 35
41 108 11 43 60 33 66 39 14 67 44 43 115 34 108 78 79 102 35 58
30 40 44 43 3 69 92 24 91 35 3 32 44 43 119 45 16 80 67 39
110 59 113 107 103 76 82 47 50 38 25 81 68 118 31 65 68 22 23 124
45 94 80 79 12 63 65 55 62 124 92 35 124 78 58 2 99 24 91 118
5 85 105 113 20 56 25 31 91 48 55 45 124 79 63 79 78 102 46 10
124 43 115 92 108 108 41 58 111 119 39 28 66 33 31 110 59 85 126 90
123 103 64 91 38 29 81 35 46 31 122 22 21 17 96 16 82 50 76 47
26 124 66 33 31 17 44 126 19 115 4 92 58 35 54 67 79 102 46 10
59 103 64 107 38 101 88 54 69 52 39 124 73 33 31 126 85 105 90 110
68 31 122 26 124 47 76 38 123 19 60 102 58 79 12 126 85 105 110 20
28 14 72 36 117 122 24 1 25 91 122 21 24 22 115 63 65 9 61 124
14 28 72 39 117 94 102 58 35 12 24 122 1 25 70 2 25 27 91 48
29 69 39 91 98 83 85 105 38 112 18 103 28 91 100 68 31 122 25 56
51 45 82 106 109 85 53 105 112 83 51 45 126 38 109 41 108 58 111 12
123 19 91 101 64 47 103 38 123 88 92 78 68 124 31 23 122 1 25 56
88 8 121 95 47 32 43 115 92 22 45 109 82 89 106 36 18 42 117 6
28 31 39 91 29 101 4 119 108 32 115 40 44 43 22 32 17 115 21 91
51 45 82 38 112 126 62 124 112 106 31 92 39 124 73 51 84 126 106 109
44 17 37 7 64 56 122 1 25 91 32 17 115 64 3 8 88 98 86 52
111 4 58 35 54 44 32 115 101 64 55 61 124 79 60 92 39 69 91 73
94 102 67 79 12 45 94 80 108 39 65 124 126 106 34 101 115 69 108 32
18 48 27 36 42 65 87 9 23 124 108 34 11 43 60 101 88 54 57 47
81 66 72 68 31 13 38 105 112 83 73 88 54 76 39 73 122 126 91 115
68 122 22 23 124 126 62 124 87 20 54 123 73 76 108 92 122 24 91 118
88 101 91 103 123 98 18 42 117 29 25 56 31 91 122 39 29 72 28 31
2 98 99 91 29 101 4 69 108 54 45 39 73 76 108 83 85 105 26 100
28 29 98 18 117 45 33 124 112 73 69 88 98 39 91 94 54 80 108 39
122 1 59 56 91 108 92 58 60 43 19 123 47 101 64 69 4 54 101 52
69 88 98 86 39 122 24 115 21 91 123 103 47 101 64 38 105 85 107 100
122 23 1 22 96 122 87 22 126 96 41 108 58 43 119 109 84 15 89 47
28 31 26 91 73 18 103 113 6 100 31 68 72 26 66 45 55 124 112 63
72 81 31 68 48 45 33 73 76 39 59 38 85 126 90 28 85 38 91 73
42 2 27 91 48 30 3 44 43 119 88 123 69 91 73 85 73 122 126 124
69 88 39 54 73 59 100 113 107 103 45 47 108 71 74 53 13 105 112 83
113 59 85 107 100 85 59 100 113 26 28 88 38 76 73 109 71 15 89 106
45 47 82 16 89 32 43 115 44 108 45 55 89 16 82 45 71 74 106 89
98 2 42 91 29 23 68 9 65 124 20 63 33 26 53 83 33 77 14 63
19 69 115 101 108 122 17 115 21 22 123 54 47 76 108 65 63 9 62 124
72 48 28 36 29 32 40 115 21 3 85 28 33 38 100 87 122 20 126 96
34 55 124 65 106 83 63 33 112 53 44 71 126 19 34 124 65 60 22 68
34 22 126 124 115 82 76 16 50 125 45 47 82 38 76 18 36 113 6 27
48 2 31 91 29 115 19 64 91 17 45 47 82 89 109 48 72 42 36 29
110 105 85 107 90 33 45 124 112 63 65 87 22 126 124 117 18 42 36 29
44 19 47 101 64 111 94 58 35 12 28 85 26 33 73 28 14 33 50 100
45 108 74 60 34 45 55 74 60 79 44 19 115 34 126 28 88 39 91 73
88 8 50 95 117 79 78 124 35 58 55 45 82 125 16 14 75 117 6 100
103 18 28 91 88 69 88 54 86 52 84 85 126 38 112 79 78 102 60 58
111 4 58 108 119 45 33 77 79 67 25 2 31 91 48 14 28 33 50 39
66 33 39 79 67 19 123 38 91 73 29 28 98 39 117 79 67 102 46 94
92 122 68 22 70 45 125 82 16 76 126 122 124 85 20 14 83 33 50 100
32 43 58 92 108 83 85 33 53 112 55 62 124 65 106 26 85 59 113 20
98 18 95 117 6 85 126 124 112 73 41 108 11 60 34 103 123 47 101 88
18 36 117 6 100 19 123 69 91 101 84 109 15 89 106 45 79 94 39 80
63 68 9 26 124 94 45 80 108 12 47 45 82 16 76 123 54 73 76 88
20 23 122 1 56 116 27 59 113 20 53 13 63 112 62 85 73 33 26 124
45 51 82 38 109 124 45 115 34 108 102 94 58 79 12 109 71 45 89 47
122 24 118 25 70 16 45 125 67 39 47 38 64 107 103 45 16 76 108 39
81 78 10 68 31 92 122 24 118 70 43 44 115 34 22 126 85 38 90 84
126 45 90 38 109 122 22 92 124 115 51 84 126 38 112 85 83 33 26 100
4 92 58 108 32 108 41 74 60 34 85 83 105 38 100 45 82 33 77 112
28 103 117 50 100 92 31 122 124 73 8 88 54 76 47 124 43 60 22 34
33 66 124 79 63 14 63 33 26 66 62 53 105 112 20 28 85 26 91 100
122 22 126 17 115 62 126 124 112 20 85 83 33 38 112 79 124 66 61 10
28 76 88 50 38 62 55 124 112 106 45 33 77 112 63 79 45 80 67 39
19 115 126 91 17 81 2 35 118 31 54 16 47 76 108 124 79 66 61 63
29 81 72 48 31 71 44 126 19 90 33 45 124 79 39 71 45 74 106 34
23 68 122 26 124 33 45 73 124 39 29 69 99 86 98 61 55 124 65 60
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element vertices element vertices element vertices element vertices
(continued) (continued) (continued) (continued)

S0 S1 S2 S3 S4 S0 S1 S2 S3 S4 S0 S1 S2 S3 S4 S0 S1 S2 S3 S4
43 124 115 92 22 43 11 60 22 34 8 88 54 57 52 45 79 124 39 58
78 92 68 118 31 55 45 77 112 63 109 84 38 90 47 23 20 9 26 124
8 49 54 76 39 85 59 100 91 38 85 38 105 112 84 103 47 38 50 88
24 122 1 21 91 124 79 60 61 10 84 97 38 90 47 62 20 124 112 63
25 122 68 118 70 47 44 64 7 90 51 45 126 106 112 85 5 59 110 113
51 84 82 38 109 63 83 33 26 53 73 31 33 26 124 45 33 73 112 38
110 59 85 107 113 17 44 64 19 90 45 51 126 38 112 55 62 124 112 63
122 21 1 22 70 92 122 24 22 115 38 105 85 84 90 92 4 58 108 54
33 45 73 76 38 8 88 50 39 117 20 59 122 26 56 24 32 115 92 22
1 122 20 23 96 43 32 115 92 108 31 73 122 26 124 3 32 120 101 119
126 17 59 110 20 68 23 9 26 124 87 122 22 126 124 92 115 69 108 73
72 39 66 46 31 40 115 44 43 3 17 44 37 3 64 32 4 120 101 119
92 122 68 118 31 33 66 77 14 63 59 122 126 20 17 31 28 26 33 73
45 124 126 106 112 28 76 88 73 39 82 45 33 38 112 126 59 90 38 19
108 32 44 101 119 114 36 113 6 100 54 94 80 108 12 88 101 121 57 47
104 103 47 7 64 45 94 58 108 12 69 29 39 86 98 55 45 124 112 106
103 50 28 117 88 126 45 124 112 73 79 67 66 46 10 82 45 33 77 125
45 126 90 38 19 44 19 115 101 108 47 38 64 19 90 68 124 60 78 92
113 59 27 20 26 29 39 72 46 31 85 20 105 112 53 79 124 78 46 10
116 5 59 110 20 13 126 105 112 84 108 92 39 124 58 124 79 66 46 10
48 18 27 91 42 113 105 85 26 100 19 45 73 76 108 45 108 124 60 58
14 36 117 28 100 88 8 54 86 52 20 63 9 26 124 85 83 105 26 53
100 18 28 36 26 18 113 100 91 26 122 87 22 23 124 108 45 39 124 73
26 18 28 91 100 65 124 60 22 34 71 19 45 108 47 41 108 74 11 34
17 122 115 21 91 103 104 47 101 64 116 110 59 17 20 107 97 7 90 47
13 53 63 112 83 84 51 126 106 112 63 20 33 26 124 28 88 98 39 117
85 20 33 26 53 19 123 47 76 108 28 14 33 26 66 75 14 117 50 100
122 1 20 17 96 31 28 39 91 73 11 34 44 43 22 39 124 35 46 79
14 36 117 6 72 20 63 33 112 124 123 54 47 101 88 94 111 58 35 54
18 103 28 117 88 123 54 73 69 108 50 83 33 38 100 115 92 69 91 73
7 110 64 107 90 38 13 105 112 84 84 51 82 38 112 105 38 85 107 90
25 2 24 91 118 14 28 33 26 100 103 75 95 117 6 44 104 37 101 64
93 71 44 90 47 36 42 117 6 72 30 11 44 43 22 22 44 126 17 115
45 19 73 115 108 31 28 72 39 66 33 45 79 67 39 55 45 80 79 74
83 105 114 26 100 124 43 115 34 22 45 19 126 115 73 103 28 100 91 38
17 44 90 7 64 17 32 115 21 3 20 85 33 26 124 45 16 125 76 39
105 113 114 26 100 123 19 47 38 64 45 71 89 106 109 54 94 58 108 39
67 79 94 39 46 85 26 59 122 20 45 19 73 76 38 32 91 115 101 64
19 71 45 90 47 23 20 122 87 124 83 85 33 26 53 71 45 126 106 109
115 40 32 43 3 45 71 126 106 34 88 28 50 39 117 126 62 105 112 20
78 35 102 46 10 87 65 9 62 124 73 85 33 38 112 28 76 33 50 39
81 66 10 46 31 33 45 125 67 77 78 81 10 46 31 14 83 114 26 100
23 122 1 22 70 33 66 77 79 67 124 39 66 46 79 83 14 33 26 100
45 71 126 19 90 19 59 64 90 38 73 85 33 112 124 45 51 82 106 112
79 35 94 39 46 17 126 59 110 90 91 31 122 26 56 19 123 73 69 108
36 18 113 6 100 82 83 33 50 125 45 19 47 76 108 38 28 33 50 100
59 19 64 91 38 66 33 77 79 63 45 55 77 79 63 28 14 36 26 100
14 28 117 50 100 45 16 80 108 74 97 84 38 90 105 83 85 33 38 100
48 56 27 91 26 29 39 35 91 31 76 28 88 50 39 36 14 114 26 100
19 123 69 101 108 33 125 77 14 67 32 24 115 21 22 97 107 7 90 110
14 28 72 26 66 92 69 39 54 73 76 28 33 50 38 83 82 33 77 125
108 45 74 71 34 32 108 44 43 119 26 72 31 68 48 83 14 33 50 125
4 69 54 86 52 28 31 39 33 73 85 126 105 112 20 83 82 33 38 112
75 103 117 50 95 29 69 99 91 35 40 30 44 43 22 83 63 33 77 112
98 18 28 91 29 22 122 126 124 115 28 29 72 39 117 39 54 73 76 108
92 35 31 91 118 31 68 66 26 124 124 45 126 106 34 94 45 58 108 39
113 18 27 91 26 88 69 73 39 91 81 78 35 46 31 19 123 73 76 38
94 45 58 79 12 82 83 33 77 112 71 109 45 90 47 8 88 50 76 39
85 5 59 113 20 85 28 38 33 73 38 47 45 19 90 79 67 94 39 80
78 124 35 46 31 45 16 125 67 55 1 116 59 17 20 33 45 77 79 63
39 124 66 46 31 85 20 122 26 124 28 33 73 76 38 55 45 82 112 77
53 105 85 26 20 32 24 115 92 91 45 33 125 67 39 5 85 59 110 20
59 56 122 91 26 45 33 82 76 38 39 29 35 46 31 14 36 114 6 100
11 30 44 43 119 85 126 38 91 73 110 7 64 17 90 113 36 114 26 100
78 79 124 60 58 84 51 82 106 109 31 68 122 26 56 59 110 64 107 103
16 49 50 76 39 122 85 26 91 73 59 85 100 91 26 38 59 126 91 85

45 55 82 112 106 94 54 58 108 12

This mesh is composed of 4 573 pentatopes in 4D (again, virtual elements connected to node 0 have been
omitted).

This kind of adaption has been successfully tested with h = 1/3, h = 1/4, h = 1/5. All generated
mesh are not reproduced here, however, table A.4 gives major characteristics of these tests. Good final

uniform CPU time in seconds number number of final averaged minimal averaged
size on a 220 Mflops workstation of nodes elements quality quality

h = 1/2 4 126 946 0.486350 0.218303
h = 1/3 41 451 4573 0.502368 0.213219
h = 1/4 179 1 192 14 887 0.516302 0.198019
h = 1/5 547 2 588 35 894 0.518706 0.145331

Table A.4: Results about 4D adaption on a hypercube

qualities are attained, in reasonable computational times.



Appendix B

Complements on natural and
multidomain metrics

Some useful algorithms for the natural metric and the multidomain metric have not been described
in chapters 4 and 6. For the sake of completeness, their are detailed in this appendix.

B.1 Local computation of the layer number

In the natural metric computation, the local number of element layers through the thickness is re-
quired, both for the minimal neighborhood order evaluation (section B.1.1) and for the convergence
criterion (section B.1.2).

B.1.1 Minimal order evaluation

The following algorithm is employed to evaluate the local number of element layers in the mesh.

Algorithm B.1 proceeds by two steps:

descending: an incremental propagation according to successive neighborhoods
– every boundary nodes belong to layer 1
– their (not already visited) neighbors belongs to layer 2
– this process is repeated, until no node remains

we obtain kmax, the maximal layer number
ascending: a retro-propagation from the interior to the boundary

for k from kmax − 1 to 1 do
for l from k + 1 to kmax do

– the nodes belonging to the current layer k
that are also neighbors of nodes belonging to the new layer l
become nodes of the new layer l

done
done
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At the end of this algorithm, each node S is associated with a final layer number, denoted by k(S),
which is nearly half the local number of element layers. Then, the minimal order kmin, chosen at node
S, is at least equal to k(S) and at most equal to 2k(S)− 1. Empirically, this range works well.

Furthermore, we denote by k0 the first order such that the hull Ck0(S) intersects the boundary. We
denote by S0 one of the intersection node (belonging to Ck0(S) ∩ ∂Ω). Then, we determine whether all
nodes in Ck0(S) ∩ ∂Ω belongs to the same connex compound than S0 (by boundary edge searching) or
not. If it is not the case, then the hull Ck0(S) intersects the boundary ∂Ω with, at least, two connex
compounds and the elliptic interpolation begins to be relevant on Ck0(S).

Finally, the minimal order is

kmin = min
(

max(k0, k(S)), 2k(S)− 1
)

(B.1)

B.1.2 Convergence criterion

Thanks to algorithm B.1, 2k(S)− 1 is the local number of element layers (or this number + 1). That
is the reason why we consider the following averaged number of element layers as a convergence criterion

naverage =
1

card(N )

∑
S∈N

(
2k(S)− 3

2

)
(B.2)

In this average, all the node set N is used, except for nodes where the natural metric computation
is impossible (a node belonging to no element, for instance). Furthermore, when the natural metric
is computed for a subdomain of Ω (next section), the node set used in this average computation is
intentionally reduced to the nodes belonging to that subdomain.
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B.2 Subdomain boundary

In the multidomain framework, we need to determine the boundary of a subdomain ω (for the com-
putation of its natural metric), within a mesh of the global computational domain Ω. Such a boundary is
essential, since boundary nodes play an important role in the aforementioned minimal order evaluation.

B.2.1 Boundary nodes

The following algorithm is devoted to the boundary node determination of ω (among all nodes that
belong to ω).

Algorithm B.2 a loop involving two steps is required:

– node 0 is said to be on layer number 1
– the layer number, denoted by k, is initially 0
while some nodes have not been treated do

while a node can be found outside ω do
– increment k
for each node S on the layer number k do

– each neighbor of S is either on the layer number (-1) if it belongs to ω,
or on the layer number k+1 otherwise

done
done
– all nodes of the layer number (-1) are boundary nodes of ω

and become nodes on the layer number k+1
while a node can be found inside ω do

– increment k
for each node S on the layer number k do

– each neighbor of S is either on the layer number k+1 if it belongs to ω,
or on the layer number (-2) otherwise,
in the latter case, S becomes a node of the layer (-1)

done
done
– all nodes of the layer number (-1) are boundary nodes of ω

and become nodes of the layer number k+1
– all nodes of the layer number (-2) become nodes of the layer number k+2

done

This algorithm proceeds by coloring from the node 0, following successive neighborhoods and distin-
guishing between nodes inside and nodes outside the subdomain. After this algorithm is run, all boundary
nodes of the subdomain are detected and its natural metric can be computed by hull growing.

Unfortunately, the list of boundary nodes is not enough in the determination of whether a hull
intersects the boundary with at least two connex compounds. The connectivity between boundary nodes
is also required (following section).
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B.2.2 Boundary faces

Once the nodes that belong to the subdomain ω are known, the sub-topology Tω (that is, elements
of Ω’s mesh whose all vertices belongs to ω) can be extracted. For a multidomain mesh with exact
interfaces, the obtained sub-mesh represents accurately ω and boundary nodes of this sub-mesh are the
same than those of the preceding section.

However, if interfaces are fuzzy, the sub-mesh does not represents accurately ω and boundary nodes
of this sub-mesh may not be all the same than boundary nodes determined by the previous section
(figure B.1). In particular, some boundary nodes (determined by the previous section) may belong to no

Figure B.1: Sub-mesh of a subdomain
(boundary nodes of the preceding section are circled, while Tω is the set of elements in gray)

element of Tω. That is the reason why Tω is completed by the elements of the initial mesh, whose at least
one vertex is a boundary node of ω (elements in white on figure B.1). In this way, no boundary node is
isolated.

Thus, some nodes outside ω can be used in the final sub-mesh. However, this complementary nodes are
not used as boundary nodes. They only serve the connectivity purpose, in the determination of whether
a hull intersects the boundary ∂Tω with at least two connex compounds (as described in section B.1.1).
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B.3 Voxelization

Still considering a subdomain ω, the discontinuous P 0 interpolation of its characteristic function relies
on the filling ratio computation of each mesh element by ω. In our case, this filling ratio is evaluated by
sampling the element in many points and by counting points that belong to ω (section B.3.1). For that
purpose, an efficient technique, to determine whether a point belong to ω or not, is required. Here, we
use a black and white voxelization of ω (section B.3.2).

B.3.1 Sampling

We denote by ε the minimal thickness size of ω. To ensure that no geometrical detail of ω is ignored
by the sampling, the distance between two consecutive point of the sample is imposed to be always lower
than ε/

√
2.

Let T be a mesh element whose vertices are S0, . . . , Sd. The sample used to evaluate the filling ratio
of T is composed by the nodes:

S0 + µ1 S0S1 + . . . + µd S0Sd (B.3)

where scalars µj are

µj =
ij
Ij

(
1− i1

I1

)
. . .

(
1− ij−1

Ij−1

)
(B.4)

and where indices ij are

0 6 ij 6 Ij = ceil
((

1− i1
I1

)
. . .

(
1− ij−1

Ij−1

)
‖S0Sj‖
ε/
√

2

)
(B.5)

the ceil function being the integer part +1.

Such a sampling is not uniform over the mesh, but sufficiently accurate that no geometrical detail
with a size greater or equal than ε misses all points.

B.3.2 Mesh screening

When ω is defined by simple geometrical zones (like a parallelotope, a cylinder, a sphere, maybe
transformed by an affinity), it is easy to localize a point x ∈ Rd inside or outside ω, with a constant
number of operations. In this case, the filling ratio evaluation is not expensive.

Unfortunately, ω is, in general, a complex geometry, modelled by a CAD tool. After meshing opera-
tions, a mesh of ω can be used for the localization of a point x. But the cost of such a localization is linear
with the number of elements in the mesh (and numerical roundoff errors can be can be encountered).
The localization cost based on a mesh can be reduced by the use of an appropriate tree (section 2.1.3.2
page 24).

Here, a voxelization (in 2D, it would be called a pixelization) of ω is preferred (figure B.2). In practice,
a bounding box of ω (the screen) is divided in small parallelotopes (the pixels in 2D, the voxels otherwise)
and the geometrical zone corresponding to ω colors the concerned pixels or voxels. Many 3D rendering
software use this technique [Schroeder et al. 2002, Kaufman 2004].

For our purpose, only monochromatic screens are considered, were lit pixels or voxels are those
belonging to ω. Pixels or voxels could be anisotropic, but we only use isotropic ones, whose size is
imposed by the required accuracy. For the sake of simplicity, we also consider only Cartesian principal
directions for the screen. Presently, no tree organization (section 2.1.1 page 19) is used. So, all pixels or
voxels have the same size ε′, which should be small enough that no geometrical detail of ω is missed.
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(a) (b)

Figure B.2: Coarse mesh of ω and its voxelization.

So as to lighten voxels belonging to ω (which is defined by a coarse mesh), several techniques could
be employed:

• for each voxel of the screen, determine if it belongs or not to one element of the mesh (this is the
most expensive way)

• for each element T of the mesh and for each voxel V of a bounding box of T , compute the distance
vector between T and V ’s center; if all coordinates of this vector are lower that ε′/2, then V is lit
(this way, no voxel is forgotten, but the distance vector is not easy to compute for a simplex T )

• for each element T of the mesh, sample T as in the preceding section and light the closest voxel of
each point in the sample (this way, some voxels can be forgotten, but only in the vicinity of the
boundary)

• the previous technique can be used to lighten the boundary of ω, then, each connex compound of
the screen can be scan (unfortunately, many pathological cases arise in 3D).

The second technique is employed by the Vtk library [Schroeder et al. 2002]. However, we need a tech-
nique easy to implement for all spatial dimensions. We focus our attention on the third technique.

So as to forget no voxel in the vicinity of the boundary, boundary faces are also sampled and the
corresponding voxels are lit. The overall technique is not very expensive, since a screen involving 31
million voxels has been lit with the coarse mesh of figure B.2, within 24 secondes on a 220 Mflops
workstation.



Appendix C

Rem3D simulation example

Here we add the report of a Rem3D simulation, relying on an anisotropic mesh, generated by a natural
metric. The aim of this appendix is to show that such a mesh is suitable for a finite element computation
of the filling process, together with a viscoplastic behavior and thermal coupling.

The geometry of interest has been proposed by Plastic Omnium (figure C.1). Simulation of the filling

Figure C.1: Picture of the real part

stage has been performed with Rem3D version 2.1.
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C.1 Pre-treatment

In what concerns modelling, some characteristics of the mesh generation are described. Rheological
parameters, thermal parameters and boundary conditions are also mentioned in this section.

C.1.1 Mesh

This simulation relies on a mesh generated by topological optimization (section 2.2 page 25), driven
by a natural metric field. The metric field is built with 8 element layers required through the thickness
(chapiter 4 page 55). Blocking faces (that is to say, faces whose vertices are all boundary nodes) have
then been treated. For symmetry reasons, only half of the geometry is meshed (figure C.2).

Figure C.2: Natural mesh of the Plastic Omnium geometry

This meshing phase leads to a mesh with about 63 000 nodes and 320 000 elements. This order of
magnitude is compatible with an implicit simulation running on a workstation equipped with 750 Mo
RAM (tableau C.1).

number of nodes 62 937
number of elements 320 540
workstation Pentium IV 1.5 GHz 750 Mo RAM
elapsed time 31 hours

Table C.1: Summary of simulation characteristics

Furthermore, a R-adaption (without remeshing) has been applied on the mesh during the simulation.
It allows a numerical diffusion reduction around the flow front. Without R-adaption, this kind of diffusion
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makes the flow front position very noisy, because of the mesh anisotropy.

C.1.2 Materials

The injected material is a polypropylene, called Stamax P30YM240. Its fiber reinforcement is not
modelled: a Cross-WLF behavior law is chosen. This kind of law is traditionally employed for amorphous
polymers, between their glass transition temperature and 100 K above. Here, the Cross-WLF is chosen
for a semi-crystalline polymer, because parameters are available in a material database. This materials
database (embedded with GLPre 2.2) gives the following values:

• a consistency of 2 175.99 Pa

• a shear rate exponent of 0.35

• a density of 0.93 g.cm−3

• a specific heat of 2.25 J.g−1.K−1

• and a conductivity of 0.19 W.m−1.K−1.

For the air trapped inside the mold cavity, the default parameters are considered (a low density and
a low viscosity).

C.1.3 Initial conditions and boundary conditions

In what concerns the initial temperature, the fluid polymer is injected at 250◦C and the mold is
assumed to be perfectly regulated at 40◦C. Initially, the air inside the cavity is considered at a temperature
of 40◦C.

At the injection gate, the fluid is injected with an imposed rate. This rate is computed so that
the filling stage is achieved in 3.7 secondes (which is the injection duration given by Plastic Omnium).
Volume of the part being 189 357.9 mm3, we imposed a rate of 51 177.8 mm3.s−1.

The symmetry plane is adiabatic and no normal velocity is admitted on it. All other boundary zones
(except the injection gate and the symmetry plane) have an imposed zero velocity (no slip contact).
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C.2 Post-treatment

Here, global results are presented and we also focus our attention on the local behavior around a weld
line.

C.2.1 Flow during injection

In what concerns the flow front evolution during the filling stage, some numerical short shots are
plotted on figure C.3. The flow front is plotted via the 50% level set surface of the fluid filling ratio.

Figure C.3: Numerical short shots (organized in column)

With the injection gate on the right, the front moves from the right to the left and fills successively
the floor, the side and the internal cross plates. This filling scenario is realistic, however some elements
close to the boundary are not easily filled. It may be caused by an slight incompatibility between the
convection solver and some anisotropic elements.
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The pressure history at the injection gate (figure C.4) shows a sudden inflection around 0.2 s, when

Figure C.4: Pressure history at the injection gate

the fluid reaches the floor plate. After 0.2 s, the flow front can extend in a larger space, thus, a constant
injection rate leads to a lower injection pressure. At 2.75 s, the pressure field is given on figure C.5.

Figure C.5: Pressure field (in MPa) at 2.75 s
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The boundary velocity field is not very interesting, since the boundary condition is homogeneous,
except at the injection gate and on the symmetry plane. That is the reason why we prefer to plot the
interior velocity profile (figure C.6). Beyond the flow front, we can observe a non zero velocity field in

Figure C.6: Velocity vector field during the filling process (the flow front is in green)

the air. This is due to the fact that the air is modelled by a compressible and almost inviscid material.
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In what concerns the temperature field (figure C.7), mechanical dissipation leads to a 19◦C tempera-

Figure C.7: Temperature (in ◦C) at 3 s

ture rising, which might be overestimated. It militates in favor of taking the element shape into account,
in the thermal solver (which relies on a mixed formulation, P0 in temperature and P0+ in flux), so that
anisotropic meshes become more compatible with.

This global results show that a Rem3D computation has succeeded with a natural mesh. However,
some improvements are possible for the Rem3D convection-diffusion solvers, so that anisotropic meshes
can be used without any limitation.
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C.2.2 Weld line study

In fact, the real part has a default: a weld line takes place in the middle of its side (figure C.8). In

Figure C.8: Picture of one part side (in this rear view, the injection gate is on the left)

this picture, we can observe the local orientation of the fiber reinforcement. We focus our attention on
the undesired weld line (this curved line appears darker than its surrounding). For symmetry reasons,
the same weld line can be observed on the other side plate.

This weld line is located before the crossing zone between the side plate and an interior plate (fig-
ure C.9, this crossing zone appears brighter).

Figure C.9: Partial view around the weld line
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It is important for Plastic Omnium to determine wether such a weld line formation can be predicted
by Rem3D or not, because a weld line is a weakness of the final part, which must be taken into account
in further structure simulations. Here, we present some results around this local zone.

During the filling stage, flow fronts of the side plate and of the interior plate meet between t = 1.5 s
and t = 2.0 s (figure C.10). The simulation result indicates a weld line formation, located at the crossing

Figure C.10: Numerical short shots around the weld line

zone between the side plate and the interior plate (which is a little different place from the observation of
figure C.8). However, some numerical diffusion remains around the flow front (despite the R-adaption),
which prevents us from accurately locating the weld line.
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Unfortunately, the post-treatment tool (GLView) cannot keep the weld line information. However, its
formation can be detected by the temperature field observation on a cutting plane inside the side plate
(figure C.11).

Figure C.11: Temperature (in ◦C) on a cutting plane (inside the side plate) at different time steps
(truncated scale)

On figure C.11, the scale has been intentionally tighten around 220 ◦C, so that we can observe a
cooler line formation at the weld line place. This cooler zone is a weld line manifestation. However, it
seems difficult to derive an automatic weld line detection tool from such a temperature field observation.

As a conclusion, Rem3D and GLView can be used to locate manually the formation of a weld line,
but this is not an automatic tool for weld line prediction. Further investigations are needed so as to
detect and to store a weld line information, dedicated to structural simulations on final parts.
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for the solution of the Stefan problem. Journal of Computational Physics, 2004, 194,
p. 233-255.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

193



194 BIBLIOGRAPHY

[Ben Belgacem et al. 1995] F. Ben Belgacem, P. Hild and P. Laborde. The mortar finite element method
for contact problems. Journal Math. Comput. Modelling.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

[Bigot 2001] E. Bigot. Simulation tridimensionnelle du remplissage de corps mince par injection. Ph.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13, 104

[Dompierre et al. 2002] J. Dompierre, M.-G. Vallet, Y. Bourgault, M. Fortin and W. Habashi.
Anisotropic Mesh Adaptation: Towards User-Independant, Mesh-Independant and
Solver-Independant CFD. Part III: Unstructured Meshes. International Journal for Nu-
merical Methods in Fluids, 2002, 39, p. 675-702.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

[Dompierre et al. 2003] J. Dompierre, M.-G. Vallet, P. Labbé and F. Guibault. On simplex shape mea-
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- applications aux éléments finis. Paris : Hermès, 1997.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22, 43, 45

[George and Borouchaki 2002] P.-L. George and H. Borouchaki. Premières expériences de maillage au-
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[Stalický and Roos 1999] T. Stalický and H.-G. Roos. Anisotropic mesh refinement for problems with
internal and boundary layers. International Journal For Numerical Methods In Engi-
neering, 1999, 46, p. 1933-1953.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

[Takahashi et al. 2001] S. Takahashi, Y. Kokojima and R. Ohbuchi. Explicit Controls of Topological Tran-
sitions in Morphing Shape of 3D Meshes. In: Proceedings of the 9th Pacific Conference
on Computer Graphics and Applications, Tokyo, octobre 2001, p. 70-79.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

[Tam et al. 2000] A. Tam, D. Ait-Ali-Yahia, M. Robichaud, M. Moore, V. Kozel and W. Habashi.
Anisotropic mesh adaptation for 3D flows on structured and unstructured grids. Com-
puter Methods in Applied Mechanics and Engineering, 2001, 189, p. 1205-1230.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39, 41, 53, 63, 83

[Tchon et al. 2003] K.-F. Tchon, M. Khachan, F. Guibault and R. Camarero. Constructing anisotropic
geometric metrics using octrees and skeletons. In: 12th International Meshing
Roundtable, Santa Fe, 2003, p. 293-304.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19, 71

[Tezduyar and Osawa 2001] T. Tezduyar and Y. Osawa. The multi-domain method for computation of
the aerodynamics of a parachute crossing the far wake of an aircraft. Computer Methods
in Applied Mechanics and Engineering, 2001, 191, p. 705-716.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

[Tezduyar et al. 1998] T. Tezduyar, S. Aliabadi and M. Behr. Enhanced-Discretisation Interface-
Capturing Technique (EDICT) for computation of unsteady flows with interfaces. Com-
puter Methods in Applied Mechanics and Engineering, 1998, 155, p. 235-248.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
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Abstract

Computational mechanics can usually encounter three major problems in mesh generation: thin
and curved geometry treatment, meshing for a simulation involving several objects and boundary layer
improvement.

In this work, we introduce the notion of natural metric in order to automatically place several element
layers through the thickness of thin and curved geometries. A suitable anisotropic mesh for numerical
simulation is thus obtained by a topological optimization strategy.

When the mesh needs to be refined around interfaces between the different objects involved in a
multidomain simulation, we propose a second metric field that tightens the elements around such surfaces,
in an anisotropic way.

Furthermore, this multidomain metric can be used in boundary layer generation, which improves
meshes obtained with the natural metric. Finally, the anisotropy of a computed field and the uniformiza-
tion of an a posteriori error indicator can be exploited to correct the natural metric.

All these developments are illustrated on 3D complex parts, coming from material forming, especially
from polymer injection molding, using Rem3D.

Keywords: unstructured mesh, anisotropic adaption, natural metric, elliptic interpolation,
multidomain metric, tensorial product, voxelization, error estimation, Rem3D simulation
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